Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
Selayang Baru Health Clinic, Gombak District Health Office, Ministry of Health Malaysia, Bandar Baru Selayang, 68100, Batu Caves, Selangor, Malaysia.
Sci Rep. 2024 Nov 21;14(1):28849. doi: 10.1038/s41598-024-80091-0.
Cardiovascular disease (CVD) is a major global cause of premature mortality. While multiple studies propose CVD mortality prediction models based on regression frameworks, incorporating causal understanding through causal inference approaches can enhance accuracy. This paper demonstrates a methodology combining evidence synthesis and expert knowledge to construct a causal model for premature CVD mortality using Directed Acyclic Graphs (DAGs). The process involves three phases: (1) initial DAG development based on the Evidence Synthesis for Constructing Directed Acyclic Graphs (ESC-DAGs) framework, (2) validation and consensus-building with 12 experts using the Fuzzy Delphi method (FDM), and (3) application to data analysis using population-based survey data linked with death records. Expert input refined the initial DAG model, achieving consensus on 45 causal paths. The revised model guided selection of confounding variables for adjustment. For example, to estimate the total effect of diabetes on premature CVD mortality, the suggested adjustment set included age, dietary pattern, genetic/family history, sex hormones, and physical activity. Testing different DAG models showed agreement between expert ratings and data accuracy from regression models. This systematic approach contributes to DAG methodology, offering a transparent process for constructing causal pathways for premature CVD mortality.
心血管疾病(CVD)是全球范围内导致过早死亡的主要原因之一。虽然多项研究提出了基于回归框架的 CVD 死亡率预测模型,但通过因果推理方法纳入因果理解可以提高准确性。本文展示了一种结合证据综合和专家知识的方法,使用有向无环图(DAG)构建用于预测早发性 CVD 死亡率的因果模型。该过程包括三个阶段:(1)基于证据综合构建有向无环图(ESC-DAGs)框架的初始 DAG 开发,(2)使用模糊德尔菲法(FDM)与 12 位专家进行验证和达成共识,(3)使用基于人群的调查数据与死亡记录链接进行数据分析的应用。专家的输入对初始 DAG 模型进行了改进,就 45 条因果路径达成了共识。经修订的模型指导了混杂变量的选择,以便进行调整。例如,要估计糖尿病对早发性 CVD 死亡率的总影响,建议的调整集包括年龄、饮食模式、遗传/家族史、性激素和身体活动。测试不同的 DAG 模型表明,专家评分与回归模型数据准确性之间存在一致性。这种系统方法为 DAG 方法学做出了贡献,为构建早发性 CVD 死亡率的因果途径提供了一个透明的过程。