Suppr超能文献

图像到图像的机器翻译可实现对真实世界图像的计算去雾。

Image-to-image machine translation enables computational defogging in real-world images.

作者信息

Pollak Anton, Menon Rajesh

出版信息

Opt Express. 2024 Sep 9;32(19):33852-33860. doi: 10.1364/OE.532576.

Abstract

Computational defogging using machine learning presents significant potential; however, its progress is hindered by the scarcity of large-scale datasets comprising real-world paired images with sufficiently dense fog. To address this limitation, we developed a binocular imaging system and introduced Stereofog-an open-source dataset comprising 10,067 paired clear and foggy images, with a majority captured under dense fog conditions. Utilizing this dataset, we trained a pix2pix image-to-image (I2I) translation model and achieved a complex wavelet structural similarity index (CW-SSIM) exceeding 0.7 and a peak signal-to-noise ratio (PSNR) above 17, specifically under dense fog conditions (characterized by a Laplacian variance, v < 10). We note that Stereofog contains over 70% of dense-fog images. In contrast, models trained on synthetic data, or real-world images augmented with synthetic fog, exhibited suboptimal performance. Our comprehensive performance analysis highlights the model's limitations, such as issues related to dataset diversity and hallucinations-challenges that are pervasive in machine-learning-based approaches. We also propose several strategies for future improvements. Our findings emphasize the promise of machine-learning techniques in computational defogging across diverse fog conditions. This work contributes to the field by offering a robust, open-source dataset that we anticipate will catalyze advancements in both algorithm development and data acquisition methodologies.

摘要

使用机器学习进行计算去雾具有巨大潜力;然而,其进展受到包含具有足够浓雾的真实世界配对图像的大规模数据集稀缺的阻碍。为了解决这一限制,我们开发了一种双目成像系统,并引入了Stereofog——一个包含10,067对清晰和有雾图像的开源数据集,其中大部分是在浓雾条件下拍摄的。利用这个数据集,我们训练了一个pix2pix图像到图像(I2I)翻译模型,并在浓雾条件下(以拉普拉斯方差v < 10为特征)实现了超过0.7的复小波结构相似性指数(CW-SSIM)和高于17的峰值信噪比(PSNR)。我们注意到Stereofog包含超过70%的浓雾图像。相比之下,在合成数据或添加了合成雾的真实世界图像上训练的模型表现欠佳。我们全面的性能分析突出了该模型的局限性,例如与数据集多样性和幻觉相关的问题——这些挑战在基于机器学习的方法中普遍存在。我们还提出了一些未来改进的策略。我们的研究结果强调了机器学习技术在不同雾况下计算去雾中的前景。这项工作通过提供一个强大的开源数据集为该领域做出了贡献,我们预计这将推动算法开发和数据采集方法的进步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验