Suppr超能文献

基于深度迁移学习和局部均值自适应的图像去雾算法

Image dehazing algorithm based on deep transfer learning and local mean adaptation.

作者信息

Shi Dongyang, Huang Sheng

机构信息

School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.

出版信息

Sci Rep. 2025 Jul 31;15(1):27956. doi: 10.1038/s41598-025-13613-z.

Abstract

In recent years, haze has significantly hindered the quality and efficiency of daily tasks, reducing the visual perception range. Various approaches have emerged to address image dehazing, including image enhancement, restoration, and deep learning-based dehazing methods. While these methods have improved dehazing performance to some extent, they often struggle in bright regions of the image, leading to distortions and suboptimal dehazing results. Moreover, dehazing models generally exhibit weak noise resistance, with the PSNR value of dehazed images typically falling below 30 dB. Residual noise remains in the processed images, leading to degraded visual quality. Currently, it is challenging for dehazing models to simultaneously ensure effective dehazing in bright regions while maintaining strong noise suppression capabilities. To address both issues simultaneously, we propose an image dehazing algorithm based on deep transfer learning and local mean adaptation. The framework consists of several key modules: an atmospheric light estimation module based on deep transfer learning, a transmission map estimation module utilizing local mean adaptation, a haze-free image reconstruction module, an image enhancement module, and a noise reduction module. This design ensures stable and accurate atmospheric light estimation, enabling the model to process different regions of hazy images effectively and prevent distortion artifacts. Furthermore, to enrich the details of the dehazed pictures and enhance the dehazing performance while improving the model's noise resistance, we incorporate an image enhancement module and a noise reduction module into the proposed dehazing framework. To validate the effectiveness of the proposed algorithm, we conducted dehazing experiments on a Self-Made Synthetic Hazy Dataset, the SOTS (outdoor) dataset, the NH-HAZE dataset, and O-HAZE dataset. Experimental results demonstrate that the proposed dehazing model achieves superior performance across all four datasets. The dehazed images exhibit no color distortion, and the PSNR values consistently exceed 30 dB, indicating that the dehazed images are of high quality. The dehazed images also demonstrate a significant advantage in SSIM performance compared to mainstream dehazing algorithms, consistently achieving a similarity of over 85%. This indicates that the proposed dehazing model effectively mitigates distortion while enhancing noise resistance, exhibiting strong generalization capabilities across different datasets. The experimental results confirm that the proposed dehazing algorithm handles bright regions, such as the sky, and significantly reduces residual noise in the dehazed images. Both aspects demonstrate strong performance, validating the effectiveness and superiority of the proposed dehazing model. Furthermore, the algorithm achieves consistently good dehazing performance across all three hazy datasets, demonstrating its generalization capability. This study presents a novel dehazing method and theoretical framework that can be effectively applied to scenarios such as autonomous driving and intelligent surveillance systems. The proposed model offers a novel approach to image dehazing, contributing to advancements in related fields and promoting further development in haze removal technologies.

摘要

近年来,雾霾严重阻碍了日常任务的质量和效率,缩小了视觉感知范围。为解决图像去雾问题,出现了各种方法,包括图像增强、恢复以及基于深度学习的去雾方法。虽然这些方法在一定程度上提高了去雾性能,但它们在图像的明亮区域往往效果不佳,导致图像失真和去雾效果不理想。此外,去雾模型通常抗噪声能力较弱,去雾后图像的峰值信噪比(PSNR)值通常低于30分贝。处理后的图像中仍残留噪声,导致视觉质量下降。目前,去雾模型要同时在明亮区域确保有效的去雾效果并保持强大的噪声抑制能力具有挑战性。为同时解决这两个问题,我们提出一种基于深度迁移学习和局部均值自适应的图像去雾算法。该框架由几个关键模块组成:基于深度迁移学习的大气光估计模块、利用局部均值自适应的透射率图估计模块、无雾图像重建模块、图像增强模块和降噪模块。这种设计确保了稳定且准确的大气光估计,使模型能够有效地处理雾天图像的不同区域并防止失真伪像。此外,为丰富去雾图像的细节并在提高模型抗噪声能力的同时增强去雾性能,我们将图像增强模块和降噪模块纳入所提出的去雾框架中。为验证所提算法的有效性,我们在自制的合成雾天数据集、SOTS(室外)数据集、NH - HAZE数据集和O - HAZE数据集上进行了去雾实验。实验结果表明,所提出的去雾模型在所有四个数据集上均取得了优异的性能。去雾后的图像没有颜色失真,PSNR值始终超过30分贝,表明去雾后的图像质量很高。与主流去雾算法相比,去雾后的图像在结构相似性(SSIM)性能方面也具有显著优势,相似度始终超过85%。这表明所提出的去雾模型在增强抗噪声能力的同时有效地减轻了失真,在不同数据集上具有很强的泛化能力。实验结果证实,所提出的去雾算法能够处理天空等明亮区域,并显著降低去雾图像中的残留噪声。这两个方面都表现出强大的性能,验证了所提出的去雾模型的有效性和优越性。此外,该算法在所有三个雾天数据集上均取得了一致良好的去雾性能,证明了其泛化能力。本研究提出了一种新颖的去雾方法和理论框架,可有效地应用于自动驾驶和智能监控系统等场景。所提出的模型为图像去雾提供了一种新方法,有助于相关领域的进步并推动去雾技术的进一步发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8dd/12313995/62015ea37cf4/41598_2025_13613_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验