Suppr超能文献

双脉冲飞秒激光辐照下石英玻璃的超快动力学及内部作用机制

Ultrafast dynamics and internal processing mechanism of silica glass under double-pulse femtosecond laser irradiation.

作者信息

Ren Guoqi, Ito Yusuke, Yoshizaki Reina, Sun Huijie, Hattori Junya, Sugita Naohiko

出版信息

Opt Express. 2024 Aug 26;32(18):32408-32420. doi: 10.1364/OE.530465.

Abstract

Femtosecond laser-induced plasma filaments have potential for various applications including attosecond physics, spectroscopy, and microprocessing. However, the use of plasma filaments to generate high-aspect-ratio internal modifications remains low-efficiency. Here, we experimentally demonstrated high-efficiency internal processing using plasma filaments induced by a double-pulse femtosecond laser. The processing mechanism was revealed through an investigation of the ultrafast dynamics of plasma filaments in experiments and simulations. We found that the excitation region of the first pulse (P1) exerted a temporal effect on the propagation and absorption of the second pulse (P2) due to the evolution of excited electrons, thus resulting in different processing characterizations. At a smaller inter-pulse delay (IPD), electrons and self-trapped excitons induced by P1 improved the absorption of P2 in the shallow region. Consequently, the main excitation regions of P1 and P2 were separated, resulting in a lower density of energy deposition and weak modifications. Whereas, at a larger IPD, P2 penetrated a deeper region with the relaxation of electrons and excitons induced by P1, leading to a better overlap of excitation regions between P2 and P1, thus improving the density of energy deposition and achieving efficient microprocessing. Besides, at an infinite IPD, P2 behaved like P1, but no modification was obtained owing to the complete energy diffusion of P1. Therefore, controlling the electron dynamic and energy diffusion contributes to the improvement of modification efficiency. Furthermore, the distribution of electron densities on the cross section was estimated to precisely analyze the microprocessing. These results are expected to aid in a better understanding of the interaction mechanism between dielectrics and intense ultrafast lasers and be useful for microprocessing applications.

摘要

飞秒激光诱导的等离子体细丝具有多种应用潜力,包括阿秒物理、光谱学和微加工。然而,利用等离子体细丝产生高纵横比的内部改性仍然效率低下。在此,我们通过实验证明了利用双脉冲飞秒激光诱导的等离子体细丝进行高效内部加工。通过实验和模拟对等离子体细丝的超快动力学进行研究,揭示了加工机制。我们发现,由于受激电子的演化,第一个脉冲(P1)的激发区域对第二个脉冲(P2)的传播和吸收产生了时间效应,从而导致不同的加工特性。在较小的脉冲间延迟(IPD)下,P1诱导的电子和自陷激子提高了P2在浅区域的吸收。因此,P1和P2的主要激发区域分离,导致能量沉积密度较低且改性较弱。而在较大的IPD下,P2随着P1诱导的电子和激子的弛豫穿透更深的区域,导致P2和P1之间的激发区域更好地重叠,从而提高了能量沉积密度并实现了高效微加工。此外,在无限大的IPD下,P2的行为类似于P1,但由于P1的能量完全扩散而未获得改性。因此,控制电子动力学和能量扩散有助于提高改性效率。此外,估计了横截面上的电子密度分布,以精确分析微加工。这些结果有望有助于更好地理解电介质与强超快激光之间的相互作用机制,并对微加工应用有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验