Suppr超能文献

Plasmonic modulators based on enhanced interaction between graphene and localized transverse-electric plasmonic mode.

作者信息

Hou Anle, Wang Yulin, Geng Feihu, Zhang Yong, Huang Chengping, Zhou Lin

出版信息

Opt Express. 2024 Nov 4;32(23):40730-40740. doi: 10.1364/OE.539110.

Abstract

Active plasmonic modulators with high modulation depth, low energy consumption, ultra-fast speed, and small footprint are of interest and particular significance for nanophotonics and integrated optics. Here by constructing a transverse-electric (TE) plasmonic mode and maximizing the in-plane component localized on the graphene surface, we propose a high-performing plasmonic modulator based on a graphene/split ring-like plasmonic waveguide (SRPW) system with a record high modulation depth (20.46 dB/µm) and suppressed insertion loss (0.248 dB/µm) at telecom wavelength 1310 nm, simultaneously possessing pronounced advantage in broadband ability (800-1650 nm) and superior electrical performance with energy consumption of 0.43 fJ/bit and modulation speed of 200 GHz. This innovative design provides a novel approach and idea for enhancing the interaction between light and matter in the waveguide system and will certainly inspire new schemes for the development of on-chip integrated optoelectronic devices.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验