He Weichen, Wang Yisen
Opt Express. 2024 Oct 21;32(22):39415-39428. doi: 10.1364/OE.538446.
The nonlinear lithium niobate (LiNbO), characterized by transparency across a broad spectral range from ultraviolet to mid-infrared, stands out as an ideal material for second-harmonic generation (SHG). The concept of bound states in the continuum (BIC) represents a non-radiative mode embedded within the radiation continuum, offering the capability to confine the electromagnetic field within the nanostructure. Here, we propose the design of a LiNbO metasurface utilizing the BIC mechanism to enhance SHG at fundamental wavelengths above 2 µm, which injects new thoughts into the field of integrated optics and on-chip photonics. Notably, we rigorously accounted for the influence of the side-wall angle θ and the corner rounding radius R of the LiNbO metasurface, which arises from fabrication tolerances. Considering those influences in the simulation, we achieved a quasi-BIC (q-BIC) with a quality factor (Q-factor) up to 1.44 × 10. Moreover, by considering the depleted pump model, the absolute efficiency of SHG reached 4.09 with a corresponding normalized efficiency of 8.19 × 10m/W under a radiation intensity of 5 kW/cm. Our research aims to establish a predictive framework through numerical simulations, specifically addressing realistic fabrication problems. This approach is intended to optimize the parameters for LiNbO metasurface fabrication, ensuring that the subsequent experiment efforts are efficient. Our findings provide an approach to predicting the optical response in actual structures and inspire new applications in photonics.
非线性铌酸锂(LiNbO)具有从紫外到中红外的宽光谱范围透明度,是二次谐波产生(SHG)的理想材料。连续域束缚态(BIC)的概念代表了一种嵌入辐射连续谱中的非辐射模式,能够将电磁场限制在纳米结构内。在此,我们提出了一种利用BIC机制设计的LiNbO超表面,以增强2μm以上基波波长的SHG,这为集成光学和片上光子学领域注入了新的思路。值得注意的是,我们严格考虑了LiNbO超表面侧壁角θ和角圆角半径R的影响,这些影响源于制造公差。在模拟中考虑这些影响后,我们实现了品质因数(Q因子)高达1.44×10的准BIC(q-BIC)。此外,通过考虑耗尽泵浦模型,在5kW/cm的辐射强度下,SHG的绝对效率达到4.09,相应的归一化效率为8.19×10m/W。我们的研究旨在通过数值模拟建立一个预测框架,具体解决实际制造问题。这种方法旨在优化LiNbO超表面制造的参数,确保后续实验工作高效进行。我们的研究结果提供了一种预测实际结构中光学响应的方法,并激发了光子学中的新应用。