Cen Mengjie, Ma Xinyue, Yang Xi, Zhang Shangshang, Liu Long, Szostak Michal, Chen Tieqiao
School of Chemistry and Chemical Engineering, Hainan University Haikou 570228 China
Hainan Research Academy of Environmental Sciences Haikou 571127 PR China.
Chem Sci. 2024 Nov 14;15(48):20346-20354. doi: 10.1039/d4sc05429f. eCollection 2024 Dec 11.
Cycloaddition and annulation strategies are among the most powerful methods for creating molecular complexity in organic molecules. In this manuscript, we report a highly site-selective palladium-catalyzed decarbonylative [4 + 2] cyclization of carboxylic acids with terminal alkynes by a sequential C-C/C-H bond activation. Most notably, this method represents the first use of carboxylic acids as the ubiquitous and underdeveloped synthons for intramolecular cycloadditions by decarbonylative C-C bond cleavage. The method provides a solution to the long-standing challenge of the regioselective synthesis of substituted naphthalenes by cycloaddition. Mechanistic studies show that this reaction occurs through a sequential process involving the formation of key palladacycle by a sequential C-C/C-H bond activation and highly regioselective alkyne insertion enabled by cluster catalysis. Wide substrate scope for both carboxylic acids and terminal alkynes is demonstrated with high functional group tolerance. Moreover, this reaction is scalable and applicable to the synthesis of functionalized molecules featuring bioactive fragments. This reaction advances the toolbox of redox-neutral carboxylic acid interconversion to cycloaddition processes. We anticipate that this approach will find broad application in organic synthesis, drug discovery and functionalized material research fields.
环加成和环化策略是在有机分子中构建分子复杂性最有效的方法之一。在本论文中,我们报道了一种通过连续的C-C/C-H键活化实现的钯催化羧酸与末端炔烃的高度位点选择性脱羰[4 + 2]环化反应。最值得注意的是,该方法首次将羧酸用作通过脱羰C-C键裂解进行分子内环加成的普遍存在但未充分开发的合成子。该方法为通过环加成区域选择性合成取代萘这一长期存在的挑战提供了解决方案。机理研究表明,该反应通过一个连续过程发生,该过程涉及通过连续的C-C/C-H键活化形成关键的钯环以及通过簇催化实现的高度区域选择性炔烃插入。羧酸和末端炔烃都具有广泛的底物范围,并且对官能团具有高耐受性。此外,该反应具有可扩展性,适用于合成具有生物活性片段的功能化分子。该反应扩展了氧化还原中性羧酸转化为环加成过程的方法库。我们预计这种方法将在有机合成、药物发现和功能化材料研究领域得到广泛应用。