Suppr超能文献

基于光子计数计算机断层扫描的深度学习质子阻止本领估计:一项虚拟研究

Deep learning estimation of proton stopping power with photon-counting computed tomography: a virtual study.

作者信息

Larsson Karin, Hein Dennis, Huang Ruihan, Collin Daniel, Scotti Andrea, Fredenberg Erik, Andersson Jonas, Persson Mats

机构信息

KTH Royal Institute of Technology, Department of Physics, Stockholm, Sweden.

Karolinska University Hospital, MedTechLabs, BioClinicum, Solna, Sweden.

出版信息

J Med Imaging (Bellingham). 2024 Dec;11(Suppl 1):S12809. doi: 10.1117/1.JMI.11.S1.S12809. Epub 2024 Nov 20.

Abstract

PURPOSE

Proton radiation therapy may achieve precise dose delivery to the tumor while sparing non-cancerous surrounding tissue, owing to the distinct Bragg peaks of protons. Aligning the high-dose region with the tumor requires accurate estimates of the proton stopping power ratio (SPR) of patient tissues, commonly derived from computed tomography (CT) image data. Photon-counting detectors for CT have demonstrated advantages over their energy-integrating counterparts, such as improved quantitative imaging, higher spatial resolution, and filtering of electronic noise. We assessed the potential of photon-counting computed tomography (PCCT) for improving SPR estimation by training a deep neural network on a domain transform from PCCT images to SPR maps.

APPROACH

The XCAT phantom was used to simulate PCCT images of the head with CatSim, as well as to compute corresponding ground truth SPR maps. The tube current was set to 260 mA, tube voltage to 120 kV, and number of view angles to 4000. The CT images and SPR maps were used as input and labels for training a U-Net.

RESULTS

Prediction of SPR with the network yielded average root mean square errors (RMSE) of 0.26% to 0.41%, which was an improvement on the RMSE for methods based on physical modeling developed for single-energy CT at 0.40% to 1.30% and dual-energy CT at 0.41% to 3.00%, performed on the simulated PCCT data.

CONCLUSIONS

These early results show promise for using a combination of PCCT and deep learning for estimating SPR, which in extension demonstrates potential for reducing the beam range uncertainty in proton therapy.

摘要

目的

由于质子具有独特的布拉格峰,质子放射治疗能够在保护周围非癌组织的同时,实现对肿瘤的精确剂量输送。将高剂量区域与肿瘤对齐需要准确估计患者组织的质子阻止本领比(SPR),通常从计算机断层扫描(CT)图像数据中得出。CT的光子计数探测器已显示出优于能量积分探测器的优势,例如改进的定量成像、更高的空间分辨率以及电子噪声过滤。我们通过在从PCCT图像到SPR图的域变换上训练深度神经网络,评估了光子计数计算机断层扫描(PCCT)在改善SPR估计方面的潜力。

方法

使用XCAT体模通过CatSim模拟头部的PCCT图像,并计算相应的真实SPR图。管电流设置为260 mA,管电压设置为120 kV,视角数量设置为4000。CT图像和SPR图用作训练U-Net的输入和标签。

结果

用该网络预测SPR产生的平均均方根误差(RMSE)为0.26%至0.41%,这优于基于为单能CT开发的物理模型的方法(RMSE为0.40%至1.30%)以及双能CT(RMSE为0.41%至3.00%),这些方法是在模拟的PCCT数据上执行的。

结论

这些早期结果表明,将PCCT和深度学习结合用于估计SPR具有前景,进而证明了在质子治疗中降低射束范围不确定性的潜力。

相似文献

1
Deep learning estimation of proton stopping power with photon-counting computed tomography: a virtual study.
J Med Imaging (Bellingham). 2024 Dec;11(Suppl 1):S12809. doi: 10.1117/1.JMI.11.S1.S12809. Epub 2024 Nov 20.
2
Technology Characterization Through Diverse Evaluation Methodologies: Application to Thoracic Imaging in Photon-Counting Computed Tomography.
J Comput Assist Tomogr. 2025;49(1):113-124. doi: 10.1097/RCT.0000000000001608. Epub 2024 Apr 15.
3
Iterative clustering material decomposition aided by empirical spectral correction for photon counting detectors in micro-CT.
J Med Imaging (Bellingham). 2024 Dec;11(Suppl 1):S12810. doi: 10.1117/1.JMI.11.S1.S12810. Epub 2024 Dec 27.
6
Optimising proton stopping power ratio prediction with spectral cone-beam CT.
Phys Med Biol. 2025 Jul 16;70(14). doi: 10.1088/1361-6560/adebd6.
8
Iodine quantification performance with deep silicon-based Photon-Counting CT: A virtual imaging trial study.
Phys Med. 2025 Jul;135:105003. doi: 10.1016/j.ejmp.2025.105003. Epub 2025 Jun 6.
9
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
10
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.

引用本文的文献

本文引用的文献

1
The influence of dual-energy computed tomography image noise in proton therapy treatment planning.
Phys Imaging Radiat Oncol. 2023 Sep 20;28:100493. doi: 10.1016/j.phro.2023.100493. eCollection 2023 Oct.
2
Initial Clinical Images From a Second-Generation Prototype Silicon-Based Photon-Counting Computed Tomography System.
Acad Radiol. 2024 Feb;31(2):572-581. doi: 10.1016/j.acra.2023.06.031. Epub 2023 Aug 8.
4
Consensus guide on CT-based prediction of stopping-power ratio using a Hounsfield look-up table for proton therapy.
Radiother Oncol. 2023 Jul;184:109675. doi: 10.1016/j.radonc.2023.109675. Epub 2023 Apr 19.
5
Pros and Cons of Dual-Energy CT Systems: "One Does Not Fit All".
Tomography. 2023 Jan 27;9(1):195-216. doi: 10.3390/tomography9010017.
6
XCIST-an open access x-ray/CT simulation toolkit.
Phys Med Biol. 2022 Sep 28;67(19). doi: 10.1088/1361-6560/ac9174.
7
Dual-Energy Computed Tomography Proton-Dose Calculation with Scripting and Modified Hounsfield Units.
Int J Part Ther. 2021 Jun 25;8(1):62-72. doi: 10.14338/IJPT-20-00075.1. eCollection 2021 Summer.
8
Proton stopping power prediction based on dual-energy CT-generated virtual monoenergetic images.
Med Phys. 2021 Sep;48(9):5232-5243. doi: 10.1002/mp.15066. Epub 2021 Jul 27.
10
Inter-centre variability of CT-based stopping-power prediction in particle therapy: Survey-based evaluation.
Phys Imaging Radiat Oncol. 2018 Apr 30;6:25-30. doi: 10.1016/j.phro.2018.04.006. eCollection 2018 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验