Kassaee Anthony, Cheng Chingyun, Yin Lingshu, Zou Wei, Li Taoran, Lin Alexander, Swisher-McClure Samuel, Lukens John N, Lustig Robert A, O'Reilly Shannon, Dong Lei, Ms Roni Hytonen, Teo Boon-Keng Kevin
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
Department of Radiation Oncology at Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
Int J Part Ther. 2021 Jun 25;8(1):62-72. doi: 10.14338/IJPT-20-00075.1. eCollection 2021 Summer.
To describe an implementation of dual-energy computed tomography (DECT) for calculation of proton stopping-power ratios (SPRs) in a commercial treatment-planning system. The process for validation and the workflow for safe deployment of DECT is described, using single-energy computed tomography (SECT) as a safety check for DECT dose calculation.
The DECT images were acquired at 80 kVp and 140 kVp and were processed with computed tomography scanner software to derive the electron density and effective atomic number images. Reference SPRs of tissue-equivalent plugs from Gammex (Middleton, Wisconsin) and CIRS (Computerized Imaging Reference Systems, Norfolk, Virginia) electron density phantoms were used for validation and comparison of SECT versus DECT calculated through the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, California) application programming interface scripting tool. An in-house software was also used to create DECT SPR computed tomography images for comparison with the script output. In the workflow, using the Eclipse system application programming interface script, clinical plans were optimized with the SECT image set and then forward-calculated with the DECT SPR for the final dose distribution. In a second workflow, the plans were optimized using DECT SPR with reduced range-uncertainty margins.
For the Gammex phantom, the root mean square error in SPR was 1.08% for DECT versus 2.29% for SECT for 10 tissue-surrogates, excluding the lung. For the CIRS Phantom, the corresponding results were 0.74% and 2.27%. When evaluating the head and neck plan, DECT optimization with 2% range-uncertainty margins achieved a small reduction in organ-at-risk doses compared with that of SECT plans with 3.5% range-uncertainty margins. For the liver case, DECT was used to identify and correct the lipiodol SPR in the SECT plan.
It is feasible to use DECT for proton-dose calculation in a commercial treatment planning system in a safe manner. The range margins can be reduced to 2% in some sites, including the head and neck.
描述在商业治疗计划系统中利用双能计算机断层扫描(DECT)计算质子阻止本领比(SPR)的方法。介绍了DECT的验证过程和安全部署工作流程,使用单能计算机断层扫描(SECT)作为DECT剂量计算的安全检查。
在80 kVp和140 kVp下采集DECT图像,并使用计算机断层扫描扫描仪软件进行处理,以获取电子密度和有效原子序数图像。来自Gammex(威斯康星州米德尔顿)和CIRS(计算机化成像参考系统,弗吉尼亚州诺福克)电子密度体模的组织等效插塞的参考SPR用于验证,并通过Eclipse治疗计划系统(瓦里安医疗系统公司,加利福尼亚州帕洛阿尔托)应用程序编程接口脚本工具比较SECT和DECT。还使用内部软件创建DECT SPR计算机断层扫描图像,以便与脚本输出进行比较。在工作流程中,使用Eclipse系统应用程序编程接口脚本,用SECT图像集优化临床计划,然后用DECT SPR进行前向计算以获得最终剂量分布。在第二个工作流程中,使用具有减小的射程不确定性余量的DECT SPR优化计划。
对于Gammex体模,10种组织替代物(不包括肺)的SPR中,DECT的均方根误差为1.08%,而SECT为2.29%。对于CIRS体模,相应结果分别为(DECT)0.74%和(SECT)2.27%。在评估头颈部计划时,与具有3.5%射程不确定性余量的SECT计划相比,具有2%射程不确定性余量的DECT优化使危及器官剂量略有降低。对于肝脏病例,使用DECT识别并校正SECT计划中的碘油SPR。
在商业治疗计划系统中安全地使用DECT进行质子剂量计算是可行的。在包括头颈部在内的一些部位,可以将射程余量减小到2%。