Maroni Marissa J, Barton Melissa, Lynch Katherine, Deshwar Ashish R, Campbell Philip, Millard Josephine, Lee Rachel, Cohen Annastelle, Paranjapye Alekh, Faundes Víctor, Repetto Gabriela M, McKenna Caoimhe, Shillington Amelle L, Phornphutkul Chanika, Mancini Grazia Ms, Schot Rachel, Barakat Tahsin Stefan, Richmond Christopher M, Lauzon Julie, Elsayed Ibrahim Ahmed Ibrahim, Benito Daniel Natera-de, Ortez Carlos, Estevez-Arias Berta, Lecoquierre François, Cassinari Kévin, Guerrot Anne-Marie, Levy Jonathan, Latypova Xenia, Verloes Alain, Innes A Micheil, Yang Xiao-Ru, Banka Siddharth, Vill Katharina, Jacob Maureen, Kruer Michael, Skidmore Peter, Galaz-Montoya Carolina I, Bakhtiari Somayeh, Mester Jessica L, Granato Michael, Armache Karim-Jean, Costain Gregory, Korb Erica
Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA.
Department of Genetics, University of Pennsylvania, Philadelphia, PA.
medRxiv. 2024 Nov 2:2024.10.31.24314716. doi: 10.1101/2024.10.31.24314716.
Individuals with monoallelic pathogenic variants in the histone lysine methyltransferase DOT1L display global developmental delay and varying congenital anomalies. However, the impact of monoallelic loss of remains unclear. Here, we present a largely female cohort of 11 individuals with variants with developmental delays and dysmorphic facial features. We found that variants include missense variants clustered in the catalytic domain, frameshift, and stop-gain variants. We demonstrate that specific variants cause loss of methyltransferase activity and therefore sought to define the effects of decreased DOT1L function. Using RNA-sequencing of cultured neurons and single nucleus RNA-sequencing of mouse cortical tissue, we found that partial depletion causes sex-specific transcriptional responses and disrupts transcription of synaptic genes. Further, loss alters neuron branching and expression of synaptic proteins. Lastly using zebrafish and mouse models, we found behavioral disruptions that include sex-specific deficits in mice. Overall, we define how DOT1L loss leads to neurological dysfunction by demonstrating that partial loss impacts transcription, neuron morphology, and behavior across multiple models and systems.
组蛋白赖氨酸甲基转移酶DOT1L中存在单等位基因致病性变异的个体表现出全面发育迟缓及各种先天性异常。然而,单等位基因缺失的影响仍不清楚。在此,我们展示了一个主要为女性的队列,其中11名个体携带与发育迟缓及面部畸形特征相关的变异。我们发现这些变异包括聚集在催化结构域的错义变异、移码变异和无义变异。我们证明特定变异会导致甲基转移酶活性丧失,因此试图确定DOT1L功能降低的影响。通过对培养神经元进行RNA测序以及对小鼠皮质组织进行单核RNA测序,我们发现部分DOT1L缺失会导致性别特异性转录反应,并扰乱突触基因的转录。此外,DOT1L缺失会改变神经元分支和突触蛋白的表达。最后,利用斑马鱼和小鼠模型,我们发现了行为障碍,包括小鼠中的性别特异性缺陷。总体而言,我们通过证明部分DOT1L缺失会影响多个模型和系统中的转录、神经元形态和行为,从而确定了DOT1L缺失如何导致神经功能障碍。