Suppr超能文献

利用优化的转录组参考数据恢复缺失的单细胞RNA测序数据

Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references.

作者信息

Pool Allan-Hermann, Poldsam Helen, Chen Sisi, Thomson Matt, Oka Yuki

机构信息

Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Peter O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.

出版信息

Nat Methods. 2023 Oct;20(10):1506-1515. doi: 10.1038/s41592-023-02003-w. Epub 2023 Sep 11.

Abstract

Single-cell RNA-sequencing (scRNA-seq) is an indispensable tool for characterizing cellular diversity and generating hypotheses throughout biology. Droplet-based scRNA-seq datasets often lack expression data for genes that can be detected with other methods. Here we show that the observed sensitivity deficits stem from three sources: (1) poor annotation of 3' gene ends; (2) issues with intronic read incorporation; and (3) gene overlap-derived read loss. We show that missing gene expression data can be recovered by optimizing the reference transcriptome for scRNA-seq through recovering false intergenic reads, implementing a hybrid pre-mRNA mapping strategy and resolving gene overlaps. We demonstrate, with a diverse collection of mouse and human tissue data, that reference optimization can substantially improve cellular profiling resolution and reveal missing cell types and marker genes. Our findings argue that transcriptomic references need to be optimized for scRNA-seq analysis and warrant a reanalysis of previously published datasets and cell atlases.

摘要

单细胞RNA测序(scRNA-seq)是表征细胞多样性和在整个生物学领域提出假设的不可或缺的工具。基于液滴的scRNA-seq数据集通常缺乏其他方法能够检测到的基因的表达数据。在此我们表明,观察到的灵敏度缺陷源于三个方面:(1)3'基因末端注释不佳;(2)内含子 reads 掺入问题;(3)基因重叠导致的 reads 丢失。我们表明,通过回收错误的基因间 reads、实施混合前体mRNA映射策略以及解决基因重叠问题,优化scRNA-seq的参考转录组可以恢复缺失的基因表达数据。我们通过对多种小鼠和人类组织数据的收集证明,参考优化可以显著提高细胞图谱分析分辨率,并揭示缺失的细胞类型和标记基因。我们的研究结果表明,转录组参考需要针对scRNA-seq分析进行优化,并保证对先前发表的数据集和细胞图谱进行重新分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验