Suppr超能文献

从表面肌电图中提取神经策略:2004 - 2024年。

The extraction of neural strategies from the surface EMG: 2004-2024.

作者信息

Farina Dario, Merletti Roberto, Enoka Roger M

机构信息

Department of Bioengineering, Imperial College London, London, United Kingdom.

LISiN, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy.

出版信息

J Appl Physiol (1985). 2025 Jan 1;138(1):121-135. doi: 10.1152/japplphysiol.00453.2024. Epub 2024 Nov 22.

Abstract

This review follows two previous papers [Farina et al. 96: 1486-1495, 2004; Farina et al. 117: 1215-1230, 2014] in which we reflected on the use of surface electromyography (EMG) in the study of the neural control of movement. This series of papers began with an analysis of the indirect approaches of EMG processing to infer the neural control strategies and then closely followed the progress in EMG technology. In this third paper, we focus on three main areas: surface EMG modeling; surface EMG processing, with an emphasis on decomposition; and interfacing applications of surface EMG recordings. We highlight the latest advances in EMG models that allow fast generation of simulated signals from realistic volume conductors, with applications ranging from validation of algorithms to identification of nonmeasurable parameters by inverse modeling. Surface EMG decomposition is currently an established state-of-the-art tool for physiological investigations of motor units. It is now possible to identify large samples of motor units, to track motor units over multiple sessions, to partially compensate for the nonstationarities in dynamic contractions, and to decompose signals in real time. The latter achievement has facilitated advances in myocontrol, by using the online decoded neural drive as a control signal, such as in the interfacing of prostheses. Looking back over the 20 yr since our first review, we conclude that the recording and analysis of surface EMG signals have seen breakthrough advances in this period. Although challenges in its application and interpretation remain, surface EMG is now a solid and unique tool for the study of the neural control of movement.

摘要

本综述接续之前的两篇论文[法里纳等人,《神经科学杂志》96: 1486 - 1495, 2004;法里纳等人,《神经科学杂志》117: 1215 - 1230, 2014],在那两篇论文中我们探讨了表面肌电图(EMG)在运动神经控制研究中的应用。这一系列论文始于对用于推断神经控制策略的EMG处理间接方法的分析,随后密切跟踪了EMG技术的进展。在这第三篇论文中,我们聚焦于三个主要领域:表面EMG建模;表面EMG处理,重点是分解;以及表面EMG记录的接口应用。我们突出了EMG模型的最新进展,这些进展能够从逼真的容积导体快速生成模拟信号,其应用范围从算法验证到通过逆建模识别不可测量参数。表面EMG分解目前是用于运动单位生理研究的一种成熟的先进工具。现在能够识别大量运动单位样本,在多个时段跟踪运动单位,部分补偿动态收缩中的非平稳性,并实时分解信号。后一项成果通过将在线解码的神经驱动用作控制信号,推动了肌控技术的进步,例如在假肢接口方面。回顾自我们首次综述以来的20年,我们得出结论,在此期间表面EMG信号的记录和分析取得了突破性进展。尽管其应用和解读方面的挑战依然存在,但表面EMG现在是研究运动神经控制的一种可靠且独特的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验