Suppr超能文献

一种用于先进水下目标检测的混合 Bi-LSTM 和 RBM 方法。

A hybrid Bi-LSTM and RBM approach for advanced underwater object detection.

机构信息

Faculty of Computers and Information Technology, University of Tabuk, Tabuk City, Kingdom of Saudi Arabia.

Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.

出版信息

PLoS One. 2024 Nov 22;19(11):e0313708. doi: 10.1371/journal.pone.0313708. eCollection 2024.

Abstract

This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid model for Underwater Object Detection (UOD), combining Bi-directional Long Short-Term Memory (Bi-LSTM) with a Restricted Boltzmann Machine (RBM). Bi-LSTM excels at capturing long-term dependencies and processing sequences bidirectionally to enhance comprehension of both past and future contexts. The model benefits from effective feature learning, aided by RBMs that enable the extraction of hierarchical and abstract representations. Additionally, this architecture handles variable-length sequences, mitigates the vanishing gradient problem, and achieves enhanced significance by capturing complex patterns in the data. Comprehensive evaluations on brackish, and URPC 2020 datasets demonstrate superior performance, with the BiLSTM-RBM model showcasing notable accuracies, such as big fish 98.5 for the big fish object in the brackish dataset and 98 for the star fish object in the URPC dataset. Overall, these findings underscore the BiLSTM-RBM model's suitability for UOD, positioning it as a robust solution for effective underwater object detection in challenging underwater environments.

摘要

这项研究满足了深海资源开发领域水下勘探高效性的迫切需求,强调了自主作业对于减轻高压力水下环境所带来挑战的重要性。所提出的方法引入了一种水下目标检测(UOD)的混合模型,将双向长短时记忆(Bi-LSTM)与限制玻尔兹曼机(RBM)相结合。Bi-LSTM 在捕捉长期依赖关系和双向处理序列方面表现出色,从而增强了对过去和未来上下文的理解。该模型受益于有效的特征学习,RBM 有助于提取分层和抽象表示。此外,这种架构处理可变长度序列,缓解了梯度消失问题,并通过捕获数据中的复杂模式实现了增强的重要性。在咸水、URPC 2020 数据集上的综合评估表明,该模型具有出色的性能,BiLSTM-RBM 模型在咸水数据集中的大鱼物体上达到了 98.5 的高准确率,在 URPC 数据集上的海星物体上达到了 98 的准确率。总体而言,这些发现强调了 BiLSTM-RBM 模型在 UOD 中的适用性,将其定位为在具有挑战性的水下环境中进行有效水下目标检测的稳健解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17c1/11584113/9a6cf4eb9a72/pone.0313708.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验