Chen Sihan, Zhu Lili, Wang Jibo, Jiang Shanqing, Fan Yuhang, Zhao Wen, Wang Zian, Zhou Qing, Chen Yun, Chen Pu
Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, People's Republic of China.
Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, People's Republic of China.
Biofabrication. 2024 Dec 10;17(1). doi: 10.1088/1758-5090/ad9637.
Acoustic bioassembly is recently regarded as a highly efficient biofabrication tool to generate functional tissue mimics. Despite their capacity of directly patterning live cells with close intercellular proximity, most acoustic bioassembly techniques are currently limited to generate some specific simple types of periodic and symmetric patterns, which represents an urgent challenge to emulate geometrically complex cytoarchitecture in human tissue. To address this challenge, we herein demonstrate a soft-lithographically defined acoustic bioassembly (SLAB) technique that enables to assemble live cells into geometrically defined arbitrary multicellular structures. Particularly, we employed a widely accessible soft lithography technique to fabricate a polydimethylsiloxane (PDMS) construct that works as an amplitude modulation template to define the pressure distribution of near-field acoustic waves. We found that zero pressure areas of the near-field acoustic waves at the PDMS surface distribute above the air-filling regions of the PDMS construct when both the PDMS top layer and air layer are approximately one-tenth of the acoustic wavelength. Using this technique, bioparticles can be assembled into symmetrical or asymmetrical patterns. Specifically, we have demonstrated the SLAB of endothelial spheroids and hepatic cells into liver tissue mimics (LTMs). The functional analysis further indicates that the formed LTMs displayed liver-specific functions, including albumin secretion, urea synthesis, glucose metabolism, and lipid storage. We expect this SLAB technique will be broadly used to construct complex functional tissues for tissue engineering and regenerative medicine.
声学生物组装最近被视为一种用于生成功能性组织模拟物的高效生物制造工具。尽管大多数声学生物组装技术能够直接对活细胞进行图案化,使细胞间距离紧密,但目前这些技术大多仅限于生成一些特定的简单周期性和对称图案,这对于模拟人体组织中几何形状复杂的细胞结构来说是一项紧迫的挑战。为应对这一挑战,我们在此展示了一种软光刻定义的声学生物组装(SLAB)技术,该技术能够将活细胞组装成几何形状明确的任意多细胞结构。具体而言,我们采用了一种广泛可用的软光刻技术来制造一种聚二甲基硅氧烷(PDMS)构建体,该构建体用作振幅调制模板来定义近场声波的压力分布。我们发现,当PDMS顶层和空气层的厚度均约为声波波长的十分之一时,PDMS表面近场声波的零压力区域分布在PDMS构建体的空气填充区域上方。利用该技术,生物粒子可以被组装成对称或不对称图案。具体来说,我们已经展示了将内皮球状体和肝细胞通过SLAB技术组装成肝组织模拟物(LTMs)。功能分析进一步表明,形成的LTMs表现出肝脏特异性功能,包括白蛋白分泌、尿素合成、葡萄糖代谢和脂质储存。我们期望这种SLAB技术将被广泛用于构建用于组织工程和再生医学的复杂功能组织。