Guo Mengke, Ye Xiucai, Huang Dong, Sakurai Tetsuya
Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan.
Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan.
Methods. 2025 Jan;233:52-60. doi: 10.1016/j.ymeth.2024.11.013. Epub 2024 Nov 20.
Cancer can manifest in virtually any tissue or organ, necessitating precise subtyping of cancer patients to enhance diagnosis, treatment, and prognosis. With the accumulation of vast amounts of omics data, numerous studies have focused on integrating multi-omics data for cancer subtyping using clustering techniques. However, due to the heterogeneity of different omics data, extracting important features to effectively integrate these data for accurate clustering analysis remains a significant challenge. This study proposes a new multi-omics clustering framework for cancer subtyping, which utilizes contractive autoencoder to extract robust features. By encouraging the learned representation to be less sensitive to small changes, the contractive autoencoder learns robust feature representations from different omics. To incorporate survival information into the clustering analysis, Cox proportional hazards regression is used to further select the key features significantly associated with survival for integration. Finally, we utilize K-means clustering on the integrated feature to obtain the clustering result. The proposed framework is evaluated on ten different cancer datasets across four levels of omics data and compared to other existing methods. The experimental results indicate that the proposed framework effectively integrates the four omics datasets and outperforms other methods, achieving higher C-index scores and showing more significant differences between survival curves. Additionally, differential gene analysis and pathway enrichment analysis are performed to further demonstrate the effectiveness of the proposed method framework.
癌症几乎可以在任何组织或器官中表现出来,因此需要对癌症患者进行精确的亚型分类,以提高诊断、治疗和预后水平。随着大量组学数据的积累,许多研究都集中在使用聚类技术整合多组学数据进行癌症亚型分类。然而,由于不同组学数据的异质性,提取重要特征以有效整合这些数据进行准确的聚类分析仍然是一项重大挑战。本研究提出了一种用于癌症亚型分类的新的多组学聚类框架,该框架利用收缩自编码器提取鲁棒特征。通过鼓励学习到的表示对小变化不那么敏感,收缩自编码器从不同的组学中学习鲁棒的特征表示。为了将生存信息纳入聚类分析,使用Cox比例风险回归进一步选择与生存显著相关的关键特征进行整合。最后,我们对整合后的特征使用K均值聚类来获得聚类结果。在四个组学数据水平的十个不同癌症数据集上对所提出的框架进行了评估,并与其他现有方法进行了比较。实验结果表明,所提出的框架有效地整合了四个组学数据集,并且优于其他方法,实现了更高的C指数得分,并且在生存曲线之间显示出更显著的差异。此外,还进行了差异基因分析和通路富集分析,以进一步证明所提出的方法框架的有效性。