Suppr超能文献

在高噪声多组学数据中深度集成潜在一致表示以进行癌症亚型分类。

Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping.

机构信息

Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China.

出版信息

Brief Bioinform. 2024 Jan 22;25(2). doi: 10.1093/bib/bbae061.

Abstract

Cancer is a complex and high-mortality disease regulated by multiple factors. Accurate cancer subtyping is crucial for formulating personalized treatment plans and improving patient survival rates. The underlying mechanisms that drive cancer progression can be comprehensively understood by analyzing multi-omics data. However, the high noise levels in omics data often pose challenges in capturing consistent representations and adequately integrating their information. This paper proposed a novel variational autoencoder-based deep learning model, named Deeply Integrating Latent Consistent Representations (DILCR). Firstly, multiple independent variational autoencoders and contrastive loss functions were designed to separate noise from omics data and capture latent consistent representations. Subsequently, an Attention Deep Integration Network was proposed to integrate consistent representations across different omics levels effectively. Additionally, we introduced the Improved Deep Embedded Clustering algorithm to make integrated variable clustering friendly. The effectiveness of DILCR was evaluated using 10 typical cancer datasets from The Cancer Genome Atlas and compared with 14 state-of-the-art integration methods. The results demonstrated that DILCR effectively captures the consistent representations in omics data and outperforms other integration methods in cancer subtyping. In the Kidney Renal Clear Cell Carcinoma case study, cancer subtypes were identified by DILCR with significant biological significance and interpretability.

摘要

癌症是一种复杂的高死亡率疾病,受多种因素调节。准确的癌症亚型分类对于制定个性化治疗方案和提高患者生存率至关重要。通过分析多组学数据,可以全面了解驱动癌症进展的潜在机制。然而,组学数据中的高噪声水平常常在捕捉一致表示和充分整合其信息方面带来挑战。本文提出了一种基于变分自动编码器的新型深度学习模型,称为深度整合潜在一致表示(DILCR)。首先,设计了多个独立的变分自动编码器和对比损失函数,以从组学数据中分离噪声并捕获潜在一致表示。随后,提出了注意力深度集成网络,以有效整合不同组学水平的一致表示。此外,我们引入了改进的深度嵌入聚类算法,使整合后的变量聚类更加友好。使用来自癌症基因组图谱的 10 个典型癌症数据集评估了 DILCR 的有效性,并与 14 种最先进的集成方法进行了比较。结果表明,DILCR 有效地捕获了组学数据中的一致表示,在癌症亚型分类方面优于其他集成方法。在肾透明细胞癌案例研究中,DILCR 可以识别具有显著生物学意义和可解释性的癌症亚型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b1/10939425/3737b4ca6216/bbae061f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验