School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaiso, 2340000, Chile.
School of Informatics, University of Edinburgh, 10 Crichton St, Newington, Edinburgh, EH8 9AB, Scotland, UK.
Microb Cell Fact. 2024 Nov 22;23(1):315. doi: 10.1186/s12934-024-02581-0.
Fermentation processes are essential for the production of small molecules, heterologous proteins and other commercially important products. Traditional bioprocess optimisation relies on phenomenological models that focus on macroscale variables like biomass growth and protein yield. However, these models often fail to consider the crucial link between macroscale dynamics and the intracellular activities that drive metabolism and proteins synthesis.
We introduce a multiscale model that not only captures batch bioreactor dynamics but also incorporates a coarse-grained approach to key intracellular processes such as gene expression, ribosome allocation and growth. Our model accurately fits biomass and substrate data across various Escherichia coli strains, effectively predicts acetate dynamics and evaluates the expression of heterologous proteins. By integrating construct-specific parameters like promoter strength and ribosomal binding sites, our model reveals several key interdependencies between gene expression parameters and outputs such as protein yield and acetate secretion.
This study presents a computational model that, with proper parameterisation, allows for the in silico analysis of genetic constructs. The focus is on combinations of ribosomal binding site (RBS) strength and promoters, assessing their impact on production. In this way, the ability to predict bioreactor dynamics from these genetic constructs can pave the way for more efficient design and optimisation of microbial fermentation processes, enhancing the production of valuable bioproducts.
发酵过程对于小分子、异源蛋白和其他商业上重要产品的生产至关重要。传统的生物工艺优化依赖于专注于生物量生长和蛋白产量等宏观变量的现象学模型。然而,这些模型往往无法考虑宏观动力学与驱动代谢和蛋白质合成的细胞内活动之间的关键联系。
我们引入了一个多尺度模型,该模型不仅可以捕捉分批生物反应器动力学,还可以对关键的细胞内过程进行粗粒化处理,如基因表达、核糖体分配和生长。我们的模型可以准确拟合各种大肠杆菌菌株的生物量和基质数据,有效地预测乙酸动力学并评估异源蛋白的表达。通过整合构建体特异性参数,如启动子强度和核糖体结合位点,我们的模型揭示了基因表达参数与蛋白产量和乙酸分泌等输出之间的几个关键相互依存关系。
本研究提出了一种计算模型,通过适当的参数化,可以对遗传构建体进行计算机分析。重点是核糖体结合位点(RBS)强度和启动子的组合,评估它们对生产的影响。通过这种方式,从这些遗传构建体预测生物反应器动力学的能力为更有效地设计和优化微生物发酵过程、提高有价值的生物制品的生产铺平了道路。