Suppr超能文献

用于城市地区近最优颗粒物监测的卫星辅助智能传感器放置框架。

Satellite-informed smart sensor placement framework for near-optimal PM monitoring in urban areas.

作者信息

Chang-Silva Roberto, Tariq Shahzeb, Kim SangYoun, Moosazadeh Mohammad, Park Seonyoung, Yoo ChangKyoo

机构信息

Integrated Engineering, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, 17104, Republic of Korea.

Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.

出版信息

Environ Sci Pollut Res Int. 2024 Nov 23. doi: 10.1007/s11356-024-35568-w.

Abstract

Air pollution is a global public health concern, particularly due to PM, which can cause respiratory and cardiovascular diseases. Accurate placement of monitoring sensors is essential to effectively monitor and mitigate PM effects. However, the complex nature of air pollution, including factors like traffic density, population density, and weather conditions, poses challenges for sensor placement. Additionally, cost and resource constraints further complicate the process. In this study, we propose a novel algorithm that utilizes a multi-criteria optimization approach to identify optimal locations and distribution of PM monitoring sensors. The algorithm integrates various geographical covariates, such as roads, population density, terrain elevation, and satellite observations of surface PM. By applying the Non-dominated Sorting Genetic Algorithm II (NSGA-II), we optimize sensor placement. Our algorithm is validated through a case study in a metropolitan area, demonstrating its ability to identify optimal sensor locations while reducing their number and maintaining high accuracy. Furthermore, we highlight the value of satellite observations for initial PM estimates and aiding sensor placement. Our comprehensive algorithm optimizes air quality monitoring, enabling the identification of pollution hotspots, assessment of health risks, and informing policy and mitigation strategies.

摘要

空气污染是一个全球公共卫生问题,尤其是细颗粒物(PM),它可导致呼吸道和心血管疾病。准确放置监测传感器对于有效监测和减轻细颗粒物的影响至关重要。然而,空气污染的复杂性,包括交通密度、人口密度和天气条件等因素,给传感器的放置带来了挑战。此外,成本和资源限制使这一过程更加复杂。在本研究中,我们提出了一种新颖的算法,该算法利用多标准优化方法来确定细颗粒物监测传感器的最佳位置和分布。该算法整合了各种地理协变量,如道路、人口密度、地形海拔以及地表细颗粒物的卫星观测数据。通过应用非支配排序遗传算法II(NSGA-II),我们对传感器放置进行了优化。我们的算法通过在一个大都市地区的案例研究得到验证,证明了其在减少传感器数量的同时识别最佳传感器位置并保持高精度的能力。此外,我们强调了卫星观测对于初始细颗粒物估计和辅助传感器放置的价值。我们的综合算法优化了空气质量监测,能够识别污染热点、评估健康风险,并为政策制定和缓解策略提供依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验