School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, China.
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan, 430200, China.
Environ Monit Assess. 2024 Nov 23;196(12):1240. doi: 10.1007/s10661-024-13407-2.
The concentration of PM2.5 is one of the air quality indicators that the public pays the most attention to. Existing methods for PM2.5 prediction primarily analyze and forecast data from individual monitoring stations, without considering the mutual influence among multiple stations caused by natural environmental factors, e.g., air circulation. Moreover, the existing methods are mostly short-term predictions and perform poorly in long-term forecasting. In this paper, we propose MTLPM, i.e., a spatio-temporal graph neural network model based on an encoder-decoder architecture, which fully exploits the spatial dynamic patterns and long-term dependencies. Firstly, we adopt a message passing mechanism combined with spatial features and complex environmental factors (e.g., temperature, humidity, and wind direction) to update station data, capturing real-time spatial dynamic information. Secondly, we adopt the Multi-head ProbSparse Self-attention to extract temporal features, learning the long-term dependency relationships among the data. Finally, we adopt a generative one-step decoder structure to simultaneously forecast the data for multiple stations over a long period. We conducted experiments on both the project dataset and the publicly available dataset. Compared to existing state-of-the-art methods, MTLPM achieved an average reduction of approximately 1.6 in mean absolute error (MAE) and approximately 0.02 in symmetric mean absolute percentage error (SMAPE) in predicting results. The relevant source code is publicly available on GitHub.
PM2.5 浓度是公众最关注的空气质量指标之一。现有的 PM2.5 预测方法主要分析和预测来自单个监测站的数据,而没有考虑到自然环境因素(例如空气流通)引起的多个站点之间的相互影响。此外,现有的方法大多是短期预测,在长期预测方面表现不佳。在本文中,我们提出了 MTLPM,即一种基于编解码器架构的时空图神经网络模型,它充分利用了空间动态模式和长期依赖关系。首先,我们采用消息传递机制结合空间特征和复杂环境因素(例如温度、湿度和风向)来更新站数据,捕捉实时空间动态信息。其次,我们采用多头概率稀疏自注意力机制来提取时间特征,学习数据之间的长期依赖关系。最后,我们采用生成式一步解码器结构同时对多个站点的长时间序列数据进行预测。我们在项目数据集和公开可用数据集上进行了实验。与现有的最先进方法相比,MTLPM 在预测结果方面平均减少了约 1.6 的平均绝对误差 (MAE) 和约 0.02 的对称平均绝对百分比误差 (SMAPE)。相关的源代码在 GitHub 上公开。