Egawa Masaya, Uno Narumi, Komazaki Rina, Ohkame Yusuke, Yamazaki Kyotaro, Yoshimatsu Chihiro, Ishizu Yuki, Okano Yusaku, Miyamoto Hitomaru, Osaki Mitsuhiko, Suzuki Teruhiko, Hosomichi Kazuyoshi, Aizawa Yasunori, Kazuki Yasuhiro, Tomizuka Kazuma
Laboratory of Bioengineering, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
Chromosome Engineering Research Center, Tottori University, Tottori, Japan.
Genes Cells. 2025 Jan;30(1):e13184. doi: 10.1111/gtc.13184. Epub 2024 Nov 24.
Missing an entire chromosome or chromosome arm in normal diploid cells has a deleterious impact on cell viability, which may contribute to the development of specific birth defects. Nevertheless, the effects of chromosome loss in human cells have remained unexplored due to the lack of suitable model systems. Here, we developed an efficient, selection-free approach to generate partial monosomy in human induced pluripotent stem cells (iPSCs). The introduction of Cas9 proteins and a pair of gRNAs induces over megabase-sized interstitial chromosomal deletions. Using human chromosome 21 (HSA21) as a model, partial monosomy 21q (PM21q) iPSC lines with deletions ranging from 4.5 to 27.9 Mb were isolated. A 33.6 Mb deletion, encompassing all protein-coding genes on 21q, was also achieved, establishing the first 21q monosomy human iPSC line. Transcriptome and proteome analyses revealed that the abundances of mRNA and protein encoded by the majority of genes in the monosomic regions are half of the diploid expression level, indicating an absence of dosage compensation. The ability to generate customized partial monosomy cell lines on an isogenic, karyotypically normal background should facilitate the gain of novel insights into the impact of chromosome loss on cellular fitness.
在正常二倍体细胞中缺失一整条染色体或染色体臂会对细胞活力产生有害影响,这可能导致特定出生缺陷的发生。然而,由于缺乏合适的模型系统,人类细胞中染色体缺失的影响尚未得到探索。在此,我们开发了一种高效、无需筛选的方法,用于在人诱导多能干细胞(iPSC)中产生部分单体性。引入Cas9蛋白和一对引导RNA会诱导超过兆碱基大小的间质性染色体缺失。以人类21号染色体(HSA21)为模型,分离出了缺失范围在4.5至27.9 Mb之间的21q部分单体性(PM21q)iPSC系。还实现了一个33.6 Mb的缺失,涵盖了21q上所有蛋白质编码基因,从而建立了首个21q单体性人类iPSC系。转录组和蛋白质组分析表明,单体区域中大多数基因编码的mRNA和蛋白质丰度是二倍体表达水平的一半,这表明不存在剂量补偿。在同基因、核型正常的背景下生成定制化部分单体性细胞系的能力,应有助于深入了解染色体缺失对细胞适应性的影响。