Suppr超能文献

深圳新生儿坏死性小肠结肠炎在线注册研究:一项多中心、前瞻性、开放、观察性队列研究方案。

Online registry of neonatal necrotising enterocolitis in Shenzhen: protocol for a multicentre, prospective, open, observational cohort study.

机构信息

Department of Neonatology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China.

Department of Neonatology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.

出版信息

BMJ Open. 2024 Nov 24;14(11):e091290. doi: 10.1136/bmjopen-2024-091290.

Abstract

INTRODUCTION

Necrotising enterocolitis (NEC) of the intestine of preterm infants leads to the risk of abdominal surgery, short bowel syndrome, neurodevelopmental disorders and death. Although the risks of NEC and its complications have been recognised in many countries, few countries have established NEC-specific registries to continuously monitor its aetiology and prognosis. In China, the understanding of risk factors and prognosis of NEC is incomplete, characterised by a lack of evidence from prospective and multicentre studies. Therefore, we designed a multicentre, prospective, open observational cohort study with the aim of investigating the risk factors and prognosis of NEC in a real-world setting in Shenzhen, Guangdong Province, by constructing an online registry of children with NEC and a bank of biospecimens.

METHODS

This is a prospective, multicentre, open observational cohort study. From June 2024 to June 2028, more than 600 patients with NEC from 15 tertiary hospitals in Shenzhen, Guangdong Province, will be enrolled in the study. By constructing an online registry for NEC, clinical data will be collected during the prenatal and hospitalisation periods. Prospectively, biospecimens will be collected during the period of suspected NEC, at the time of confirmed NEC, and at the time of confirmed severe NEC, and filed in the online registry system. Follow-up data will include postdischarge healthcare needs, growth patterns measures, eye or vision examinations, cranial MRI findings, brainstem auditory evoked potentials or automated auditory brainstem responses, and the Chinese Griffith Developmental Scale at corrected age 18-24 months. Follow-up results were likewise recorded in an online registry system. Hospitalisation outcomes, including severe NEC, somatic growth and survival status, will be collected at discharge. Follow-up outcomes will include loss to visit, survival status, somatic growth measures and severe neurodevelopmental deficits at corrected age 18-24 months. This study will enhance our overall understanding of the risk factors and outcomes of NEC, ultimately helping to reduce the incidence of neonatal NEC and its poor prognosis.

ETHICS AND DISSEMINATION

Our programme has received approval from the Ethics Committee for Scientific Research Projects of the Longgang District Maternity & Child Healthcare Hospital in Shenzhen City (ethics approval number: LGFYKYXMLL-2024-47-01). We anticipate presenting our findings at various national conferences and submitting them to peer-reviewed paediatrics journals.

TRIAL REGISTRATION NUMBER

ChiCTR2400085043.

摘要

介绍

早产儿坏死性小肠结肠炎(NEC)可导致腹部手术、短肠综合征、神经发育障碍和死亡的风险。尽管许多国家已经认识到 NEC 及其并发症的风险,但只有少数国家建立了专门针对 NEC 的登记处,以持续监测其病因和预后。在中国,对于 NEC 的风险因素和预后的认识并不完整,缺乏来自前瞻性和多中心研究的证据。因此,我们设计了一项多中心、前瞻性、开放的观察性队列研究,旨在通过构建 NEC 患儿的在线登记处和生物标本库,调查广东省深圳市真实世界环境中 NEC 的风险因素和预后。

方法

这是一项前瞻性、多中心、开放的观察性队列研究。从 2024 年 6 月至 2028 年 6 月,广东省深圳市 15 家三级医院将招募 600 多名 NEC 患儿入组研究。通过构建 NEC 在线登记处,将在产前和住院期间收集临床数据。前瞻性地,将在疑似 NEC 期间、确诊 NEC 时和确诊严重 NEC 时采集生物标本,并将其存入在线登记系统。随访数据将包括出院后的医疗需求、生长模式测量、眼部或视力检查、头颅 MRI 结果、脑干听觉诱发电位或自动脑干反应以及 18-24 个月校正年龄时的中文 Griffith 发育量表。随访结果同样记录在在线登记系统中。住院结局,包括严重 NEC、躯体生长和生存状态,将在出院时收集。随访结局将包括失访、生存状态、躯体生长测量和 18-24 个月校正年龄时严重神经发育缺陷。本研究将提高我们对 NEC 的风险因素和结局的整体认识,最终有助于降低新生儿 NEC 的发病率及其不良预后。

伦理和传播

我们的项目已获得深圳市龙岗区妇幼保健院科学研究项目伦理委员会的批准(伦理批准号:LGFYKYXMLL-2024-47-01)。我们预计将在各种全国性会议上展示我们的研究结果,并将其提交给同行评议的儿科期刊。

临床试验注册号

ChiCTR2400085043。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/030d/11590832/f7681a1663ca/bmjopen-14-11-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验