Logeshwaran Natarajan, Kim Gyuchan, Thangavel Pandiarajan, Jeon Sun Seo, Thiyagarajan Kaliannan, Kishore Kampara Roopa, Lee Hyunjoo, Seo Inseok, Yun Hongseok, Lee Sungho, Kim Byung-Hyun, Lee Young Jun
Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea.
Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea.
Adv Sci (Weinh). 2025 Jan;12(3):e2413176. doi: 10.1002/advs.202413176. Epub 2024 Nov 24.
Electrochemical alkaline water electrolysis offers significant economic advantages; however, these benefits are hindered by the high kinetic energy barrier of the water dissociation step and the sluggish kinetics of the hydrogen evolution reaction (HER) in alkaline media. Herein, the ensemble effect of binary types of Rh single atoms (Rh-N and Rh-O) on TiO-embedded carbon nanofiber (Rh-TiO/CNF) is reported, which serves as potent active sites for high-performance HER in anion exchange membrane water electrolyzer (AEMWE). Density functional theory (DFT) analyses support the experimental observations, highlighting the critical role of binary types of Rh single atoms facilitated by the TiO sites. The Rh-TiO/CNF demonstrates an impressive areal current density of 1 A cm, maintaining extended durability for up to 225 h in a single-cell setup. Furthermore, a 2-cell AEMWE stack utilizing Rh-TiO/CNF is tested under industrial-scale conditions. This research makes a significant contribution to the commercialization of next-generation high-performance and durable AEMWE stacks for clean hydrogen production.
电化学碱性水电解具有显著的经济优势;然而,这些优势受到水离解步骤的高动能垒以及碱性介质中析氢反应(HER)缓慢动力学的阻碍。在此,报道了二元类型的Rh单原子(Rh-N和Rh-O)在TiO嵌入的碳纳米纤维(Rh-TiO/CNF)上的整体效应,其作为阴离子交换膜水电解槽(AEMWE)中高性能HER的有效活性位点。密度泛函理论(DFT)分析支持了实验观察结果,突出了由TiO位点促进的二元类型Rh单原子的关键作用。Rh-TiO/CNF表现出令人印象深刻的1 A cm的面积电流密度,在单电池装置中保持长达225小时的延长耐久性。此外,在工业规模条件下测试了使用Rh-TiO/CNF的2电池AEMWE堆栈。这项研究为下一代用于清洁制氢的高性能和耐用AEMWE堆栈的商业化做出了重大贡献。