Adams Kyra H, Reager J T, Buzzanga Brett A, David Cédric H, Sawyer Audrey H, Hamlington Benjamin D
Jet Propulsion Laboratory at California Institute of Technology Pasadena CA USA.
School of Earth Sciences Ohio State University Columbus OH USA.
Geophys Res Lett. 2024 Nov 28;51(22):e2024GL110359. doi: 10.1029/2024GL110359. Epub 2024 Nov 22.
Saltwater intrusion is a critical concern for coastal communities due to its impacts on fresh ecosystems and civil infrastructure. Declining recharge and rising sea level are the two dominant drivers of saltwater intrusion along the land-ocean continuum, but there are currently no global estimates of future saltwater intrusion that synthesize these two spatially variable processes. Here, for the first time, we provide a novel assessment of global saltwater intrusion risk by integrating future recharge and sea level rise while considering the unique geology and topography of coastal regions. We show that nearly 77% of global coastal areas below 60° north will undergo saltwater intrusion by 2100, with different dominant drivers. Climate-driven changes in subsurface water replenishment (recharge) is responsible for the high-magnitude cases of saltwater intrusion, whereas sea level rise and coastline migration are responsible for the global pervasiveness of saltwater intrusion and have a greater effect on low-lying areas.
由于对淡水生态系统和民用基础设施产生影响,海水入侵是沿海社区面临的一个关键问题。补给减少和海平面上升是陆地 - 海洋连续体上海水入侵的两个主要驱动因素,但目前尚无综合这两个空间可变过程的全球未来海水入侵估计。在此,我们首次通过整合未来补给和海平面上升情况,并考虑沿海地区独特的地质和地形,对全球海水入侵风险进行了新颖的评估。我们发现,到2100年,北半球60°以下近77%的全球沿海地区将遭受海水入侵,且主导驱动因素各不相同。由气候驱动的地下水补给(补给量)变化是高强度海水入侵情况的原因,而海平面上升和海岸线迁移则是海水入侵全球普遍性的原因,并且对低洼地区影响更大。