Suppr超能文献

一种用于预测药物粉末混合物的粒度和形状、密度及流动性的混合模型的混合系统。

A hybrid system of mixture models for the prediction of particle size and shape, density, and flowability of pharmaceutical powder blends.

作者信息

Salehian Mohammad, Moores Jonathan, Goldie Jonathan, Ibrahim Isra', Torrecillas Carlota Mendez, Wale Ishwari, Abbas Faisal, Maclean Natalie, Robertson John, Florence Alastair, Markl Daniel

机构信息

Digital Medicines Manufacturing (DM) Research Centre, Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.

Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.

出版信息

Int J Pharm X. 2024 Oct 28;8:100298. doi: 10.1016/j.ijpx.2024.100298. eCollection 2024 Dec.

Abstract

This paper presents a system of hybrid models that combine both mechanistic and data-driven approaches to predict physical powder blend properties from their raw component properties. Mechanistic, probabilistic models were developed to predict the particle size and shape, represented by aspect ratio, distributions of pharmaceutical blends using those of the raw components. Additionally, the accuracy of existing mixture rules for predicting the blend's true density and bulk density was assessed. Two data-driven models were developed to estimate the mixture's tapped density and flowability (represented by the flow function coefficient, FFC) using data from 86 mixtures, which utilized the principal components of predicted particle size and shape distributions in combination with the true density, and bulk density as input data, saving time and material by removing the need for resource-intensive shear testing for raw components. A model-based uncertainty quantification technique was designed to analyse the precision of model-predicted FFCs. The proposed particle size and shape mixture models outperformed the existing approach (weighted average of distribution percentiles) in terms of prediction accuracy while providing insights into the full distribution of the mixture. The presented hybrid system of models accurately predicts the mixture properties of different formulations and components with often , utilising raw material properties to reduce time and material resources on preparing and characterising blends.

摘要

本文提出了一种混合模型系统,该系统结合了机械方法和数据驱动方法,以根据其原始组分特性预测物理粉末混合物的特性。开发了机械概率模型,以使用原始组分的粒度和形状分布来预测药物混合物以纵横比表示的粒度和形状分布。此外,还评估了用于预测混合物真密度和堆积密度的现有混合规则的准确性。利用来自86种混合物的数据,开发了两个数据驱动模型来估计混合物的振实密度和流动性(以流动函数系数FFC表示),这些数据利用预测的粒度和形状分布的主成分与真密度和堆积密度作为输入数据,通过消除对原始组分进行资源密集型剪切测试的需要,节省了时间和材料。设计了一种基于模型的不确定性量化技术来分析模型预测的FFC的精度。所提出的粒度和形状混合模型在预测准确性方面优于现有方法(分布百分位数的加权平均值),同时提供了对混合物完整分布的见解。所提出的混合模型系统通常能够准确预测不同配方和组分的混合物特性,利用原材料特性减少了制备和表征混合物的时间和材料资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b96/11584682/4d8dd92c1455/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验