Suppr超能文献

开发和验证一种简单的临床列线图,用于预测儿科肾移植受者的感染性疾病:一项回顾性研究。

Development and validation of a simple clinical nomogram for predicting infectious diseases in pediatric kidney transplantation recipients: a retrospective study.

机构信息

Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.

Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China.

出版信息

PeerJ. 2024 Nov 21;12:e18454. doi: 10.7717/peerj.18454. eCollection 2024.

Abstract

To construct and verify an easy-to-use nomogram for predicting the risk of infectious diseases in pediatric kidney transplant recipients. Clinical data of hospitalized pediatric kidney transplant recipients were retrospectively analyzed. Meaningful variables identified from the multivariate stepwise logistic regression analysis were used to construct the nomogram. Internal validation was performed using Bootstrap resampling 1,000 times. The nomogram was evaluated using calibration, decision and receiver operating characteristic (ROC) curves. A total of 297 pediatric kidney transplant recipients were included (164 infected, 133 non-infected). Multivariate stepwise regression analysis identified white blood cell count (WBC), lymphocyte to monocyte ratio (MLR), platelet to neutrophil ratio (PNR), red cell distribution width-standard deviation (RDW-SD), and albumin (ALB) as significant predictors of postoperative infection. The nomogram, based on the five indicators, showed strong discrimination ability (AUC = 0.756; 95% CI [0.702-0.811]), with a sensitivity of 88.0% and a specificity of 54.3%. The calibration curve and decision curve further demonstrated good consistency and clinical practicality between the predicted and actual values. WBC, MLR, PNR, RDW-SD, and ALB are effective indicators for predicting postoperative infection in pediatric kidney transplant recipients. The nomogram constructed from these indicators can effectively predict and evaluate the early risk of infection in these patients.

摘要

构建并验证一种用于预测儿科肾移植受者感染性疾病风险的简便实用的列线图。回顾性分析住院儿科肾移植受者的临床资料。采用多因素逐步逻辑回归分析确定有意义的变量,并用于构建列线图。采用 1000 次 Bootstrap 重采样进行内部验证。通过校准、决策和接收者操作特征(ROC)曲线评估列线图。共纳入 297 例儿科肾移植受者(感染 164 例,未感染 133 例)。多因素逐步回归分析确定白细胞计数(WBC)、淋巴细胞与单核细胞比值(MLR)、血小板与中性粒细胞比值(PNR)、红细胞分布宽度标准差(RDW-SD)和白蛋白(ALB)是术后感染的显著预测因子。基于这 5 个指标的列线图具有较强的判别能力(AUC=0.756;95%CI[0.702-0.811]),灵敏度为 88.0%,特异度为 54.3%。校准曲线和决策曲线进一步证明了预测值和实际值之间的良好一致性和临床实用性。WBC、MLR、PNR、RDW-SD 和 ALB 是预测儿科肾移植受者术后感染的有效指标。由这些指标构建的列线图可以有效地预测和评估这些患者早期感染的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25e4/11586046/105c34ed7f2a/peerj-12-18454-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验