Suppr超能文献

通过多层外延结构产生的强钌-氧化亚铁相互作用将一氧化碳加氢选择性从甲烷转变为一氧化碳

Overturning CO Hydrogenation Selectivity from CH to CO by Strong Ru-FeO Interaction Arising from a Multilayer Epitaxial Structure.

作者信息

Qi Yuntao, Zhang Bin, Xue Dengrong, Zhang Hui, Liu Xiaoning, Liu Zhi, Zhao Shichao, Li Zhuo, Meng Fanchun, Qin Yong

机构信息

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

ACS Appl Mater Interfaces. 2024 Dec 11;16(49):67876-67888. doi: 10.1021/acsami.4c19597. Epub 2024 Nov 25.

Abstract

The catalytic conversion of CO to CO through hydrogenation has emerged as a promising strategy for CO utilization, given that CO serves as a valuable C1 platform compound for synthesizing liquid fuels and chemicals. However, the predominant formation of CH via deep hydrogenation over Ru-based catalysts poses challenges in achieving selective CO production. High reaction temperatures often lead to catalyst deactivation and changes in selectivity due to dynamic metal evolution or agglomeration, even with a classic strong metal-support interaction. Herein, we have developed a FeO/Ru/Rutile multilayer epitaxial structure by depositing a FeO layer onto the epitaxially grown RuO nanolayers on the surface of rutile nanoparticles. This multilayer epitaxial structure transformed into a structure in which Ru nanoparticles were decorated with FeO layers with ultrastable strong metal-support interaction (SMSI). Subsequently, the FeO decoration on Ru nanoparticles effectively shifted the dominant product from CH to 95% CO during CO hydrogenation. Remarkably, this catalyst exhibits exceptional stability and can be operated stably at 550 °C for a long time without apparent deactivation. Compared with the dynamic changes observed in supported Ru nanoparticles, the interaction between Ru and FeO maintains their electronic states at different reaction temperatures. Furthermore, this Ru-FeO interaction inhibits H activation capability, CO adsorption, and subsequent hydrogenation of CO. The transformation strategy employed here, which utilizes initial multilayer epitaxial structures, can be applied to construct SMSI to enhance metal catalysts' catalytic performance.

摘要

鉴于一氧化碳是用于合成液体燃料和化学品的重要C1平台化合物,通过氢化将一氧化碳催化转化为一氧化碳已成为一种很有前景的一氧化碳利用策略。然而,在钌基催化剂上通过深度氢化主要生成甲烷,这给实现选择性一氧化碳生产带来了挑战。即使存在经典的强金属-载体相互作用,高温反应也常常会由于动态金属演化或团聚导致催化剂失活和选择性变化。在此,我们通过在金红石纳米颗粒表面外延生长的RuO纳米层上沉积FeO层,制备了一种FeO/Ru/金红石多层外延结构。这种多层外延结构转变为一种Ru纳米颗粒被具有超稳定强金属-载体相互作用(SMSI)的FeO层修饰的结构。随后,Ru纳米颗粒上的FeO修饰在一氧化碳氢化过程中有效地将主要产物从甲烷转变为95%的一氧化碳。值得注意的是,这种催化剂表现出卓越的稳定性,能够在550℃下长时间稳定运行而无明显失活。与负载型Ru纳米颗粒中观察到的动态变化相比,Ru与FeO之间的相互作用在不同反应温度下维持了它们的电子态。此外,这种Ru-FeO相互作用抑制了氢的活化能力、一氧化碳的吸附以及随后一氧化碳的氢化。这里采用的利用初始多层外延结构的转变策略,可用于构建SMSI以提高金属催化剂的催化性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验