Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.
Elife. 2024 Nov 25;12:RP88224. doi: 10.7554/eLife.88224.
Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1 and CWN2). Here, we show that PEG400 applied to crystals of dimeric uWNK1 induces de-dimerization. Both the WNK1 the water networks and the chloride-binding site are disrupted by PEG400. CWN1 is surrounded by a cluster of pan-WNK-conserved charged residues. Here, we mutagenized these charges in WNK3, a highly active WNK isoform kinase domain, and WNK1, the isoform best studied crystallographically. Mutation of E314 in the Activation Loop of WNK3 (WNK3/E314Q and WNK3/E314A, and the homologous WNK1/E388A) enhanced the rate of autophosphorylation, and reduced chloride sensitivity. Other WNK3 mutants reduced the rate of autophosphorylation activity coupled with greater chloride sensitivity than wild-type. The water and chloride regulation thus appear linked. The lower activity of some mutants may reflect effects on catalysis. Crystallography showed that activating mutants introduced conformational changes in similar parts of the structure to those induced by PEG400. WNK activating mutations and crystallography support a role for CWN1 in WNK inhibition consistent with water functioning as an allosteric ligand.
渗透胁迫和氯离子调节 WNK1 和 WNK3 激酶结构域的自动磷酸化和活性。未磷酸化 WNK1(uWNK1) 的激酶结构域是一个不对称二聚体,在多个 uWNK1 晶体结构中保留有水分子。保守水存在于两个网络中,这里称为保守水网络 1 和 2(CWN1 和 CWN2)。在这里,我们表明 PEG400 应用于二聚体 uWNK1 的晶体诱导解聚。WNK1 的水网络和氯离子结合位点都被 PEG400 破坏。CWN1 被一组泛 WNK 保守带电残基包围。在这里,我们在 WNK3(一种高度活跃的 WNK 同工型激酶结构域)和 WNK1(晶体学研究最好的同工型)中突变这些电荷。WNK3 的激活环中的 E314 突变(WNK3/E314Q 和 WNK3/E314A,以及同源的 WNK1/E388A)增强了自动磷酸化的速率,并降低了氯离子的敏感性。其他 WNK3 突变体降低了自动磷酸化活性,与野生型相比,氯离子敏感性更高。因此,水和氯离子的调节似乎是相关的。一些突变体的低活性可能反映了对催化的影响。晶体学表明,激活突变体在结构的相似部位引入了与 PEG400 诱导的类似的构象变化。WNK 激活突变和晶体学支持 CWN1 在 WNK 抑制中的作用,这与水作为变构配体的功能一致。