Suppr超能文献

不同升温速率下新型药物污染物热稳定性的热分析与动力学研究

Thermoanalytical and Kinetic Studies for the Thermal Stability of Emerging Pharmaceutical Pollutants Under Different Heating Rates.

作者信息

Enyoh Christian Ebere, Maduka Tochukwu Oluwatosin, Suzuki Miho, Lu Senlin, Wang Qingyue

机构信息

Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan.

School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.

出版信息

J Xenobiot. 2024 Nov 14;14(4):1784-1806. doi: 10.3390/jox14040095.

Abstract

Emerging pharmaceutical pollutants like ciprofloxacin (CIP) and ibuprofen (IBU) are frequently detected in aquatic environments, posing risks to ecosystems and human health. Since pollutants rarely exist alone in the environment, understanding the thermal stability and degradation kinetics of these compounds, especially in mixtures, is crucial for developing effective removal strategies. This study therefore investigates the thermal stability and degradation kinetics of CIP and IBU, under different heating rates. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were employed to examine the thermal behavior of these compounds individually and in mixture (CIP + IBU) at heating rates of 10, 20, and 30 °C/min. The kinetics of thermal degradation were analyzed using both model-fitting (Coats-Redfern (CR)) and model-free (Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), and Friedman (FR)) methods. The results showed distinct degradation patterns, with CIP decomposing between 280 and 550 °C and IBU between 152 and 350 °C, while the mixture exhibited multistep decomposition in the 157-500 °C range. The CR model indicated first-order kinetics as a better fit for the degradation (except for IBU). Furthermore, CIP exhibits higher thermal stability and activation energy compared to IBU, with the KAS model yielding activation energies of 58.09 kJ/mol for CIP, 11.37 kJ/mol for IBU, and 41.09 kJ/mol for CIP + IBU mixture. The CIP + IBU mixture generally showed intermediate thermal properties, suggesting synergistic and antagonistic interactions between the compounds. Thermodynamic parameters (Δ°, Δ°, Δ°) were calculated, revealing non-spontaneous, endothermic processes for all samples (except in the FWO method) with a decrease in molecular disorder and positive Δ° values across all models and heating rates. The study found that higher heating rates led to less thermodynamically favorable conditions for degradation. These findings provide important information concerning the thermal behavior of these pharmaceutical pollutants, which can inform strategies for their removal from the environment and the development of more effective waste-treatment processes.

摘要

环丙沙星(CIP)和布洛芬(IBU)等新兴的药物污染物在水生环境中频繁被检测到,对生态系统和人类健康构成风险。由于污染物在环境中很少单独存在,了解这些化合物的热稳定性和降解动力学,尤其是在混合物中的情况,对于制定有效的去除策略至关重要。因此,本研究调查了不同加热速率下CIP和IBU的热稳定性和降解动力学。采用热重分析(TGA)和差示热分析(DTA)来研究这些化合物单独以及在混合物(CIP + IBU)中在10、20和30℃/分钟加热速率下的热行为。使用模型拟合(Coats-Redfern(CR))和无模型(Kissinger-Akahira-Sunose(KAS)、Flynn-Wall-Ozawa(FWO)和Friedman(FR))方法分析热降解动力学。结果显示出不同的降解模式,CIP在280至550℃之间分解,IBU在152至350℃之间分解,而混合物在157 - 500℃范围内呈现多步分解。CR模型表明一级动力学更适合降解(IBU除外)。此外,与IBU相比,CIP表现出更高的热稳定性和活化能,KAS模型得出CIP的活化能为58.09 kJ/mol,IBU为11.37 kJ/mol,CIP + IBU混合物为41.09 kJ/mol。CIP + IBU混合物总体上表现出中间热性质,表明化合物之间存在协同和拮抗相互作用。计算了热力学参数(Δ°、Δ°、Δ°),结果表明所有样品(FWO方法除外)的过程是非自发的、吸热的,分子无序度降低,所有模型和加热速率下的Δ°值均为正值。研究发现,较高的加热速率导致降解的热力学条件更不利。这些发现提供了有关这些药物污染物热行为的重要信息,可为从环境中去除它们的策略以及开发更有效的废物处理工艺提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32b4/11587104/927fc9103f4b/jox-14-00095-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验