Klemeyer Lars, Gröne Tjark L R, Zito Cecilia de Almeida, Vasylieva Olga, Gumus Akcaalan Melike, Harouna-Mayer Sani Y, Caddeo Francesco, Steenbock Torben, Hussak Sarah-Alexandra, Kesavan Jagadesh Kopula, Dippel Ann-Christin, Sun Xiao, Köppen Andrea, Saveleva Viktoriia A, Kumar Surender, Bester Gabriel, Glatzel Pieter, Koziej Dorota
Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany.
The Hamburg Center for Ultrafast Imaging, Hamburg 22761, Germany.
J Am Chem Soc. 2024 Dec 11;146(49):33475-33484. doi: 10.1021/jacs.4c10257. Epub 2024 Nov 25.
The key to controlling the fabrication process of transition metal sulfide nanocrystals is to understand the reaction mechanism, especially the coordination of ligands and solvents during their synthesis. We utilize high-energy resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) as well as valence-to-core X-ray emission spectroscopy (vtc-XES) combined with density functional theory (DFT) calculations to identify the formation of a tetrahedral [Zn(OA)] and an octahedral [Zn(OA)] complex, and the ligand exchange to a tetrahedral [Zn(SOA)] complex (OA = oleylamine, OAS = oleylthioamide), during the synthesis of ZnS nanorods in oleylamine. We observe the transition of the electronic structure of [Zn(SOA)] with a HOMO/LUMO gap of 5.0 eV toward an electronic band gap of 4.3 and 3.8 eV for 1.9 nm large ZnS wurtzite nanospheres and 2 × 7 nm sphalerite nanorods, respectively. Thus, we demonstrate how multimodal X-ray spectroscopy and scattering studies can not only resolve structure, size, and shape during the growth and synthesis of NPs in organic solvents and at high temperature but also give direct information about their electronic structure, which is not readily accessible through other techniques.
控制过渡金属硫化物纳米晶体制造过程的关键在于理解反应机理,尤其是在其合成过程中配体和溶剂的配位情况。我们利用高能量分辨率荧光检测X射线吸收光谱(HERFD-XAS)以及价到芯X射线发射光谱(vtc-XES)并结合密度泛函理论(DFT)计算,来确定在油胺中合成ZnS纳米棒过程中四面体[Zn(OA)]和八面体[Zn(OA)]配合物的形成,以及向四面体[Zn(SOA)]配合物(OA = 油胺,OAS = 油硫酰胺)的配体交换。我们观察到,对于1.9 nm大的纤锌矿型ZnS纳米球和2×7 nm闪锌矿型纳米棒,[Zn(SOA)]的电子结构发生转变,其最高占据分子轨道/最低未占分子轨道(HOMO/LUMO)能隙为5.0 eV,分别转变为4.3 eV和3.8 eV的电子带隙。因此,我们证明了多模态X射线光谱和散射研究不仅可以解析有机溶剂中高温下纳米颗粒生长和合成过程中的结构、尺寸和形状,还能直接提供有关其电子结构的信息,而这些信息通过其他技术难以获得。