Suppr超能文献

从价到芯 X 射线发射光谱研究过渡金属中心的几何和电子结构。

Insights into the geometric and electronic structure of transition metal centers from valence-to-core X-ray emission spectroscopy.

机构信息

Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.

Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.

出版信息

Acc Chem Res. 2015 Nov 17;48(11):2967-75. doi: 10.1021/acs.accounts.5b00309. Epub 2015 Sep 24.

Abstract

A long-standing goal of inorganic chemists is the ability to decipher the geometric and electronic structures of chemical species. This is particularly true for the study of small molecule and biological catalysts, where this knowledge is critical for understanding how these molecules effect chemical transformations. Numerous techniques are available for this task, and collectively they have enabled detailed understanding of many complex chemical systems. Despite this battery of probes, however, challenges still remain, particularly when the structural question involves subtle perturbations of the ligands bound to a metal center, as is often the case during chemical reactions. It is here that, as an emerging probe of chemical structure, valence-to-core (VtC) X-ray emission spectroscopy (XES) holds promise. VtC XES begins with ionization of a 1s electron from a metal ion by high energy X-ray photons. Electrons residing in ligand-localized valence orbitals decay to fill the 1s hole, emitting fluorescent photons in the process; in this manner, VtC XES primarily probes the filled, ligand-based orbitals of a metal complex. This is in contrast to other X-ray based techniques, such as K-edge X-ray absorption and EXAFS, which probe the unoccupied d-manifold orbitals and atomic scatterers surrounding the metal, respectively. As a hard X-ray technique, VtC XES experiments can be performed on a variety of sample states and environments, enabling application to demanding systems, such as high pressure cells and dilute biological samples. VtC XES thus can offer unique insights into the geometric and electronic structures of inorganic complexes. In recent years, we have sought to use VtC XES in the study of inorganic and bioinorganic complexes; doing so, however, first required a thorough and detailed understanding of the information content of these spectra. Extensive experimental surveys of model compounds coupled to the insights provided by DFT calculated spectra of real and hypothetical compounds allowed the development of a framework whereby VtC XES spectra may be understood in terms of a molecular orbital picture. Specifically, VtC spectra may be interpreted as a probe of electronic structure for the ligands bound to a metal center, enabling access to chemical information that can be difficult to obtain with other methods. Examples of this include the ability to (1) assess the identity and number of atomic/small molecule ligands bound to a metal center, (2) quantify the degree of bond activation of a small molecule substrate, and (3) establish the protonation state of donor atoms. With this foundation established, VtC has been meaningfully applied to long-standing questions in bioinorganic chemistry, with the potential for numerous future applications in all areas of metal-mediated catalysis.

摘要

无机化学家的长期目标是能够破译化学物质的几何和电子结构。对于小分子和生物催化剂的研究来说,这一点尤其正确,因为这些知识对于理解这些分子如何实现化学转化至关重要。为此,有许多技术可用于这项任务,它们共同为许多复杂化学系统提供了详细的理解。尽管有了这些探针,但仍然存在挑战,特别是当结构问题涉及到与金属中心结合的配体的细微扰动时,就像化学反应中经常发生的那样。正是在这一点上,作为化学结构的一种新兴探针,价态到核(VtC)X 射线发射光谱(XES)具有广阔的前景。VtC XES 始于高能 X 射线光子将金属离子的 1s 电子电离。位于配体定域价轨道中的电子衰减以填充 1s 空穴,在此过程中发射荧光光子;以这种方式,VtC XES 主要探测金属络合物的填充的、基于配体的轨道。这与其他基于 X 射线的技术形成对比,例如 K 边 X 射线吸收和 EXAFS,它们分别探测金属周围未占据的 d 壳层轨道和原子散射体。作为一种硬 X 射线技术,VtC XES 实验可以在各种样品状态和环境下进行,从而可以应用于高压力电池和稀生物样品等苛刻的系统。因此,VtC XES 可以为无机配合物的几何和电子结构提供独特的见解。近年来,我们一直试图将 VtC XES 应用于无机和生物无机配合物的研究;然而,这样做首先需要对这些光谱的信息内容有一个透彻和详细的理解。通过对模型化合物进行广泛的实验调查,并结合对真实和假设化合物的密度泛函理论计算光谱的见解,我们开发了一个框架,通过该框架,可以根据分子轨道图像来理解 VtC XES 光谱。具体来说,VtC 光谱可以解释为对金属中心结合的配体的电子结构的探针,从而可以获得其他方法难以获得的化学信息。这方面的例子包括:(1)评估与金属中心结合的原子/小分子配体的数量和种类,(2)量化小分子底物的键活化程度,以及(3)确定供体原子的质子化状态。有了这个基础,VtC 已经在生物无机化学的长期问题上得到了有意义的应用,并有可能在金属介导催化的所有领域中得到更多的未来应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验