Suppr超能文献

通过Mo-O-C键的共价偶联原位垂直锚定在还原氧化石墨烯上的双相1T/2H-MoS纳米片用于增强电催化析氢

Biphasic 1T/2H-MoS Nanosheets In Situ Vertically Anchored on Reduced Graphene Oxide via Covalent Coupling of the Mo-O-C Bond for Enhanced Electrocatalytic Hydrogen Evolution.

作者信息

Wang Xinyi, Tao Xiwen, Hou Li, Jin Jing, Sun Keju, Qiao Yelin, Jiang Zhuqing, Gao Faming

机构信息

Hebei Key Laboratory of Applied Chemistry, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.

College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.

出版信息

ACS Appl Mater Interfaces. 2024 Dec 11;16(49):68520-68532. doi: 10.1021/acsami.4c12279. Epub 2024 Nov 25.

Abstract

Transition-metal dichalcogenides (TMDs) have recently emerged as promising electrocatalysts for the hydrogen evolution reaction owing to their tunable electronic properties. However, TMDs still encounter inherent limitations, including insufficient active sites, poor conductivity, and instability; thus, their performance breakthrough mainly depends on structural optimization in hybridization with a conductive matrix and phase modulation. Herein, a 1T/2H-MoS/rGO hybrid was rationally fabricated, which is characterized by biphasic 1T/2H-MoS nanosheets in situ vertically anchored on reduced graphene oxide (rGO) with strong C-O-Mo covalent coupling. The rGO substrate improves the conductivity and ensures high-dispersed 1T/2H-MoS nanosheets to expose plentiful highly active edges. More importantly, the strong heterointerface electrical interaction by the C-O-Mo covalent bond can enhance the charge-transfer efficiency and reinforce structural stability. Furthermore, the integration with the appropriate 2H phase is in favor of stabilization of the metastable 1T phase; thus, the ratio of 1T and 2H was precisely regulated to balance activity and stability. With these advantages, the 1T/2H-MoS/rGO catalyst presents a satisfactory activity and stability, as confirmed by the relatively low overpotential (268 and 140 mV at 10 mA cm) and the small Tafel slope (102 and 86 mV dec) in alkaline and acidic media, respectively. The theory calculations disclose that the electronic structure redistribution has been optimized via the strong coupled C-O-Mo heterointerface and phase interface, significantly reducing the adsorption free energy of hydrogen and improving intrinsic activity.

摘要

过渡金属二硫属化物(TMDs)因其可调的电子性质,最近已成为用于析氢反应的有前景的电催化剂。然而,TMDs仍然面临着固有的局限性,包括活性位点不足、导电性差和稳定性不足;因此,它们的性能突破主要取决于与导电基质杂交的结构优化和相调制。在此,合理制备了一种1T/2H-MoS/rGO杂化物,其特征是双相1T/2H-MoS纳米片原位垂直锚定在还原氧化石墨烯(rGO)上,并具有强C-O-Mo共价耦合。rGO基底提高了导电性,并确保高度分散的1T/2H-MoS纳米片暴露大量高活性边缘。更重要的是,通过C-O-Mo共价键的强异质界面电相互作用可以提高电荷转移效率并增强结构稳定性。此外,与适当的2H相整合有利于亚稳1T相的稳定;因此,精确调节1T和2H的比例以平衡活性和稳定性。具有这些优点,1T/2H-MoS/rGO催化剂表现出令人满意的活性和稳定性,碱性和酸性介质中相对较低的过电位(10 mA cm时分别为268和140 mV)和较小的塔菲尔斜率(102和86 mV dec)证实了这一点。理论计算表明,通过强耦合的C-O-Mo异质界面和相界面优化了电子结构重新分布,显著降低了氢的吸附自由能并提高了本征活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验