Ma Bin, Yao Disheng, Chen Bitao, Wang Jilin, Zhang Xueqi, Tian Nan, Su Jiale, Chen Mingguang, Peng Yong, Zheng Guoyuan, Long Fei
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, China.
Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, China.
Small. 2025 Jan;21(3):e2408516. doi: 10.1002/smll.202408516. Epub 2024 Nov 25.
Due to its simple process and adaptability to large-area deposition, chemical bath deposition (CBD) is one of the preparation methods for the SnO layer in highly efficient "n-i-p" structured perovskite solar cells (PSCs). However, the residual thioglycolic acid (TGA) on the CBD-SnO surface affects the stability of PSCs and the carrier transport at the CBD-SnO/perovskite interface, hindering the further development of this method. This work demonstrates a method for the reutilization of surface groups to construct molecular bridges. This strategy utilizes the substitution reaction between the residual thiol group on the CBD-SnO surface and the iodine group of iodoacetamide (IAM) to form the IAM structure. The IAM structure not only assists the perovskite grain crystallization but also increases the electronic cloud density of the CBD-SnO surface. Consequently, the charge mobility of the CBD-SnO is enhanced and the energy band alignment at the CBD-SnO/perovskite interface is optimized. A champion device with the IAM structure achieved a power conversion efficiency (PCE) of 22.41% while it maintained 80% of its original PCE after placing at 65 °C in nitrogen filled atmosphere for over 300 h and in an environment at 25 °C and 50 ± 5% relative humidity for over 1000 h, respectively.
由于化学浴沉积(CBD)工艺简单且适用于大面积沉积,因此它是高效“n-i-p”结构钙钛矿太阳能电池(PSC)中SnO层的制备方法之一。然而,CBD-SnO表面残留的巯基乙酸(TGA)会影响PSC的稳定性以及CBD-SnO/钙钛矿界面处的载流子传输,阻碍了该方法的进一步发展。这项工作展示了一种重新利用表面基团构建分子桥的方法。该策略利用CBD-SnO表面残留的硫醇基团与碘乙酰胺(IAM)的碘基团之间的取代反应形成IAM结构。IAM结构不仅有助于钙钛矿晶粒结晶,还增加了CBD-SnO表面的电子云密度。因此,CBD-SnO的电荷迁移率得到提高,并且CBD-SnO/钙钛矿界面处的能带排列得到优化。具有IAM结构的冠军器件实现了22.41%的功率转换效率(PCE),同时在氮气填充气氛中65°C放置超过300小时以及在25°C和50±5%相对湿度的环境中放置超过1000小时后,分别保持了其原始PCE的80%。