Suppr超能文献

通过智能手机和数码单反相机图像分析进行深度学习用于口腔癌早期诊断:一项系统综述

Deep learning for early diagnosis of oral cancer via smartphone and DSLR image analysis: a systematic review.

作者信息

Thakuria Tapabrat, Rahman Taibur, Mahanta Deva Raj, Khataniar Sanjib Kumar, Goswami Rahul Dev, Rahman Tashnin, Mahanta Lipi B

机构信息

Mathematical and Computational Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.

出版信息

Expert Rev Med Devices. 2024 Dec;21(12):1189-1204. doi: 10.1080/17434440.2024.2434732. Epub 2024 Nov 28.

Abstract

INTRODUCTION

Diagnosing oral cancer is crucial in healthcare, with technological advancements enhancing early detection and outcomes. This review examines the impact of handheld AI-based tools, focusing on Convolutional Neural Networks (CNNs) and their advanced architectures in oral cancer diagnosis.

METHODS

A comprehensive search across PubMed, Scopus, Google Scholar, and Web of Science identified papers on deep learning (DL) in oral cancer diagnosis using digital images. The review, registered with PROSPERO, employed PRISMA and QUADAS-2 for search and risk assessment, with data analyzed through bubble and bar charts.

RESULTS

Twenty-five papers were reviewed, highlighting classification, segmentation, and object detection as key areas. Despite challenges like limited annotated datasets and data imbalance, models such as DenseNet121, VGG19, and EfficientNet-B0 excelled in binary classification, while EfficientNet-B4, Inception-V4, and Faster R-CNN were effective for multiclass classification and object detection. Models achieved up to 100% precision, 99% specificity, and 97.5% accuracy, showcasing AI's potential to improve diagnostic accuracy. Combining datasets and leveraging transfer learning enhances detection, particularly in resource-limited settings.

CONCLUSION

Handheld AI tools are transforming oral cancer diagnosis, with ethical considerations guiding their integration into healthcare systems. DL offers explainability, builds trust in AI-driven diagnoses, and facilitates telemedicine integration.

摘要

引言

在医疗保健领域,诊断口腔癌至关重要,技术进步提高了早期检测水平并改善了治疗结果。本综述探讨了基于人工智能的手持工具的影响,重点关注卷积神经网络(CNN)及其在口腔癌诊断中的先进架构。

方法

在PubMed、Scopus、谷歌学术和科学网进行全面搜索,以确定使用数字图像进行口腔癌诊断的深度学习(DL)相关论文。该综述在PROSPERO注册,采用PRISMA和QUADAS-2进行搜索和风险评估,并通过气泡图和柱状图分析数据。

结果

共审查了25篇论文,突出了分类、分割和目标检测作为关键领域。尽管存在注释数据集有限和数据不平衡等挑战,但DenseNet121、VGG19和EfficientNet-B0等模型在二元分类中表现出色,而EfficientNet-B4、Inception-V4和Faster R-CNN在多类分类和目标检测方面效果显著。模型的精度高达100%,特异性高达99%,准确率高达97.5%,展示了人工智能提高诊断准确性的潜力。合并数据集和利用迁移学习可增强检测效果,特别是在资源有限的环境中。

结论

基于人工智能的手持工具正在改变口腔癌诊断,伦理考量指导着它们融入医疗保健系统。深度学习提供了可解释性,增强了对人工智能驱动诊断的信任,并促进了远程医疗的整合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验