Ayasse Alana K, Cusworth Daniel H, Howell Katherine, O'Neill Kelly, Conrad Bradley M, Johnson Matthew R, Heckler Joseph, Asner Gregory P, Duren Riley
Carbon Mapper Inc., Pasadena, California 91101, United States.
Carleton University, Ottawa, Ontario K1S 5B6, Canada.
Environ Sci Technol. 2024 Dec 10;58(49):21536-21544. doi: 10.1021/acs.est.4c06702. Epub 2024 Nov 25.
Satellites are becoming a widely used measurement tool for methane detection and quantification. The landscape of satellite instruments with some methane point-source quantification capabilities is growing. Combining information across available sensor platforms could be pivotal for understanding trends and uncertainties in source-level emissions. However, to effectively combine information across sensors of varying performance levels, the probability of detection (POD) for all instruments must be well characterized, which is time-consuming and costly, especially for satellites. In August 2023, we timed methane-sensing aerial surveys from the Global Airborne Observatory (GAO) to overlap with observations from the NASA Earth Surface Mineral Dust Source Investigation (EMIT). We show how these coincident observations can be used to determine and verify the detection limits of EMIT and to develop and test a multisensor persistence framework. Under favorable conditions, the 90% POD at 3 for EMIT is 1060. We further derive a Bayesian model to infer probabilistically whether nondetected emissions were truly off, and we validate and show how this model can be used to assess the intermittency of emissions with GAO and EMIT. Time-averaged emission rates from persistent sources can be underestimated if POD is not characterized and if differences in POD across multisensor frameworks are not properly accounted for.
卫星正成为一种广泛应用于甲烷检测和量化的测量工具。具备一定甲烷点源量化能力的卫星仪器领域正在不断发展。整合现有传感器平台的信息对于理解源排放水平的趋势和不确定性可能至关重要。然而,要有效地整合不同性能水平传感器的信息,必须充分表征所有仪器的检测概率(POD),这既耗时又昂贵,尤其是对于卫星而言。2023年8月,我们安排全球机载观测站(GAO)的甲烷传感航空测量与美国国家航空航天局地球表面矿物尘埃源调查(EMIT)的观测重叠。我们展示了如何利用这些同步观测来确定和验证EMIT的检测限,以及开发和测试多传感器持久性框架。在有利条件下,EMIT在3处的90%检测概率为1060。我们进一步推导了一个贝叶斯模型,以概率方式推断未检测到的排放是否真的没有排放,并验证并展示了该模型如何用于评估GAO和EMIT排放的间歇性。如果不表征检测概率,且未适当考虑多传感器框架间检测概率的差异,持续性源的时间平均排放率可能会被低估。