Afsar Mohammad, Shukla Ankita, Ali Faiz, Maurya Rahul Kumar, Bharti Suman, Kumar Nelam, Sadik Mohammad, Chandra Surabhi, Rahil Huma, Kumar Sanjay, Ansari Imran, Jahan Farheen, Habib Saman, Hussain Tanweer, Krishnan Manju Yasoda, Ramachandran Ravishankar
Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
Nucleic Acids Res. 2024 Dec 11;52(22):13996-14012. doi: 10.1093/nar/gkae1130.
Lesions and stable secondary structures in mRNA severely impact the translation efficiency, causing ribosome stalling and collisions. Prokaryotic ribosomal proteins Rps3, Rps4 and Rps5, located in the mRNA entry tunnel, form the mRNA helicase center and unwind stable mRNA secondary structures during translation. However, the mechanism underlying the detection of lesions on translating mRNA is unclear. We used Cryo-EM, biochemical assays, and knockdown experiments to investigate the apurinic/apyrimidinic (AP) endoribonuclease activity of bacterial ribosomes on AP-site containing mRNA. Our biochemical assays show that Rps3, specifically the 130RR131 motif, is important for recognizing and performing the AP-endoribonuclease activity. Furthermore, structural analysis revealed cleaved mRNA product in the 30S ribosome entry tunnel. Additionally, knockdown studies in Mycobacterium tuberculosis confirmed the protective role of Rps3 against oxidative and UV stress. Overall, our results show that prokaryotic Rps3 recognizes and processes AP-sites on mRNA via a novel mechanism that is distinct from eukaryotes.
mRNA中的损伤和稳定二级结构会严重影响翻译效率,导致核糖体停滞和碰撞。位于mRNA进入通道的原核核糖体蛋白Rps3、Rps4和Rps5形成mRNA解旋酶中心,并在翻译过程中解开稳定的mRNA二级结构。然而,翻译过程中mRNA损伤检测的潜在机制尚不清楚。我们使用冷冻电镜、生化分析和敲低实验来研究细菌核糖体对含脱嘌呤/脱嘧啶(AP)位点的mRNA的AP核酸内切酶活性。我们的生化分析表明,Rps3,特别是130RR131基序,对于识别和执行AP核酸内切酶活性很重要。此外,结构分析揭示了在30S核糖体进入通道中有切割的mRNA产物。此外,结核分枝杆菌中的敲低研究证实了Rps3对氧化和紫外线应激的保护作用。总体而言,我们的结果表明,原核Rps3通过一种不同于真核生物的新机制识别和处理mRNA上的AP位点。