Suppr超能文献

用于固体氧化物燃料电池的低面积比电阻镧掺杂氧化铋纳米复合薄膜阴极

Low Area Specific Resistance La-Doped BiO Nanocomposite Thin Film Cathodes for Solid Oxide Fuel Cell Applications.

作者信息

Lovett Adam J, Wells Matthew P, Zhang Yizhi, Song Jiawei, Miller Thomas S, Wang Haiyan, MacManus-Driscoll Judith L

机构信息

Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, United Kingdom, CB3 0FS.

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, United Kingdom, WC1E 7JE.

出版信息

Nano Lett. 2024 Dec 11;24(49):15575-15581. doi: 10.1021/acs.nanolett.4c03679. Epub 2024 Nov 26.

Abstract

In the context of solid oxide fuel cells (SOFCs), vertically aligned nanocomposite (VAN) thin films have emerged as a leading material type to overcome performance limitations in cathodes. Such VAN films combine conventional cathodes like LaSrCoFeO (LSCF) and LaSrMnO (LSM) together with highly O ionic conducting materials including yttria-stabilized zirconia (YSZ) or doped CeO. Next-generation SOFCs will benefit from the exceptionally high ionic conductivity (1 S cm at 730 °C) of BiO-based materials. Therefore, an opportunity exists to develop BiO-based VAN cathodes. Herein, we present the first growth and characterization of a BiO-based VAN cathode, containing epitaxial La-doped BiO (LDBO) columns embedded in a LSM matrix. Our novel VANs exhibit low area specific resistance (ASR) (8.3 Ω cm at 625 °C), representing ∼3 orders of magnitude reduction compared to planar LSM. Therefore, by demonstrating a high-performance BiO-based cathode, this work provides an important foundation for future BiO-based VAN SOFCs.

摘要

在固体氧化物燃料电池(SOFC)的背景下,垂直排列的纳米复合材料(VAN)薄膜已成为克服阴极性能限制的主要材料类型。此类VAN薄膜将诸如LaSrCoFeO(LSCF)和LaSrMnO(LSM)等传统阴极与包括氧化钇稳定的氧化锆(YSZ)或掺杂CeO在内的高氧离子传导材料结合在一起。下一代SOFC将受益于基于BiO的材料极高的离子电导率(730°C时为1 S/cm)。因此,存在开发基于BiO的VAN阴极的机会。在此,我们展示了首个基于BiO的VAN阴极的生长和表征,该阴极包含嵌入LSM基质中的外延La掺杂BiO(LDBO)柱。我们新型的VAN具有低面积比电阻(ASR)(625°C时为8.3Ω/cm),与平面LSM相比降低了约3个数量级。因此,通过展示高性能的基于BiO的阴极,这项工作为未来基于BiO的VAN SOFC提供了重要基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/102d/11639050/1d4ae3534d79/nl4c03679_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验