Suppr超能文献

新开发的β-内酰胺酶抑制剂阿维巴坦、瑞来巴坦和瓦博巴坦与抗假单胞菌β-内酰胺抗生素联合对产AmpC临床铜绿假单胞菌分离株的体外活性。

In-vitro activity of newly-developed β-lactamase inhibitors avibactam, relebactam and vaborbactam in combination with anti-pseudomonal β-lactam antibiotics against AmpC-overproducing clinical Pseudomonas aeruginosa isolates.

作者信息

Le Terrier Christophe, Raro Otávio Hallal Ferreira, Saad Alaaeldin Mohamed, Nordmann Patrice, Poirel Laurent

机构信息

Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland.

Division of Intensive Care Unit, University Hospitals of Geneva, Geneva, Switzerland.

出版信息

Eur J Clin Microbiol Infect Dis. 2025 Feb;44(2):277-284. doi: 10.1007/s10096-024-04965-x. Epub 2024 Nov 26.

Abstract

PURPOSE

Overproduction of the intrinsic chromosomally-encoded AmpC β-lactamase is one of the main mechanisms responsible for broad-spectrum β-lactam resistance in Pseudomonas aeruginosa. Our study aimed to evaluate the in-vitro activity of anti-pseudomonal β-lactam molecules associated with the recently-developed and commercially-available β-lactamase inhibitors, namely avibactam, relebactam and vaborbactam, against P. aeruginosa isolates overproducing their AmpC.

METHODS

MIC values of ceftazidime, cefepime, meropenem, imipenem and ceftolozane with or without β-lactam inhibitor were determined for 50 AmpC-overproducing P. aeruginosa clinical isolates. MIC breakpoints for resistance were retained at 8 mg/L for β-lactams and β-lactam/β-lactamase inhibitor combinations containing ceftazidime, cefepime and meropenem, while 4 mg/L was used for those containing imipenem and ceftolozane. The concentration of all β-lactamases inhibitors was fixed at 4 mg/L, except for vaborbactam (8 mg/L).

RESULTS

The rates of isolates not being resistant to ceftazidime, cefepime, meropenem, imipenem and ceftolozane were found at 12%, 22%, 34%, 8% and 74%, respectively. When combined with avibactam, those rates increased to 60%, 62%, 60%, 46%, and 80%, respectively. The highest rates were found with relebactam-based combinations, being 76%, 64%, 66%, 76% and 84%, respectively. By contrast, associations with vaborbactam did not lead to significantly increased "non-resistance" rates.

CONCLUSION

Our results showed that all combinations including relebactam led to higher "non-resistance" rates against AmpC-overproducing P. aeruginosa clinical isolates. The best activity was achieved by combining ceftolozane and relebactam, that might therefore be considered as an excellent clinical alternative against AmpC overproducers.

摘要

目的

内在染色体编码的AmpCβ-内酰胺酶过度产生是铜绿假单胞菌对广谱β-内酰胺耐药的主要机制之一。我们的研究旨在评估与最近开发并上市的β-内酰胺酶抑制剂(即阿维巴坦、瑞巴坦和瓦博巴坦)联合使用的抗假单胞菌β-内酰胺分子对过度产生AmpC的铜绿假单胞菌分离株的体外活性。

方法

测定了50株过度产生AmpC的铜绿假单胞菌临床分离株对头孢他啶、头孢吡肟、美罗培南、亚胺培南和头孢洛扎坦(有无β-内酰胺酶抑制剂)的最低抑菌浓度(MIC)值。含头孢他啶、头孢吡肟和美罗培南的β-内酰胺类及β-内酰胺/β-内酰胺酶抑制剂组合的耐药MIC折点保持在8mg/L,而含亚胺培南和头孢洛扎坦的组合则为4mg/L。除瓦博巴坦为8mg/L外,所有β-内酰胺酶抑制剂的浓度均固定为4mg/L。

结果

未对头孢他啶、头孢吡肟、美罗培南、亚胺培南和头孢洛扎坦耐药的分离株比例分别为12%、22%、34%、8%和74%。与阿维巴坦联合使用时,这些比例分别增至60%、62%、60%、46%和80%。基于瑞巴坦的组合比例最高,分别为76%、64%、66%、76%和84%。相比之下,与瓦博巴坦联合使用并未导致“非耐药”比例显著增加。

结论

我们的结果表明,所有含瑞巴坦的组合对过度产生AmpC的铜绿假单胞菌临床分离株的“非耐药”比例更高。头孢洛扎坦与瑞巴坦联合使用活性最佳,因此可能被视为针对AmpC过度产生菌的优秀临床替代方案。

相似文献

4
Mutant prevention concentrations and phenotypic and genomic profiling of first-step resistance mechanisms to classical and novel β-lactams in .
Antimicrob Agents Chemother. 2025 Apr 2;69(4):e0194224. doi: 10.1128/aac.01942-24. Epub 2025 Mar 11.
6
Resistance to ceftazidime-avibactam and other new β-lactams in clinical isolates: a multi-center surveillance study.
Microbiol Spectr. 2024 Aug 6;12(8):e0426623. doi: 10.1128/spectrum.04266-23. Epub 2024 Jun 27.
8
Comparative activity of newer β-lactam/β-lactamase inhibitor combinations against Pseudomonas aeruginosa isolates from US medical centres (2020-2021).
Int J Antimicrob Agents. 2023 Apr;61(4):106744. doi: 10.1016/j.ijantimicag.2023.106744. Epub 2023 Feb 3.

引用本文的文献

本文引用的文献

5
Housekeeping gene stability in PAO1 under the pressure of commonly used antibiotics in molecular microbiology assays.
Front Microbiol. 2023 Mar 13;14:1140515. doi: 10.3389/fmicb.2023.1140515. eCollection 2023.
10
New β-Lactam-β-Lactamase Inhibitor Combinations.
Clin Microbiol Rev. 2020 Nov 11;34(1). doi: 10.1128/CMR.00115-20. Print 2020 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验