Suppr超能文献

单细胞转录组分析确定了子宫内膜癌中具有N-糖基化的亚群和特征。

Single-cell transcriptome analysis identifies subclusters and signature with N-glycosylation in endometrial cancer.

作者信息

Zhou Min, Zhang Yuefeng, Song Wei

机构信息

Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.

Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.

出版信息

Clin Transl Oncol. 2025 Jun;27(6):2467-2483. doi: 10.1007/s12094-024-03802-z. Epub 2024 Nov 26.

Abstract

INTRODUCTION

Endometrial cancer (EC) is a prevalent gynecologic cancer, with worldwide increasing incidence and disease-associated mortality. N-glycosylation, a critical post-translational modification, has been implicated in cancer progression and immune response modulation. We aimed to elucidate the role of N-glycosylation-related genes on EC cell heterogeneity, prognosis, and immunotherapy response.

METHODS

Data from single-cell RNA sequencing (scRNA) of five patients with EC were acquired from the Gene Expression Omnibus (GEO) database. Nonnegative matrix factorization (NMF) was used to identify cell subtypes related to N-glycosylation from a scRNA matrix. Subsequently, a consensus prognostic signature by integrating 101 combinations of 10 machine learning algorithms. The response to immunotherapy in EC was further examined by multiple algorithms.

RESULTS

Our findings identified 11,020 differentially expressed genes (DEGs), of which 34 N-glycosylation-related DEGs were remarkably associated with overall survival (OS) in EC. Single-cell RNA sequencing analysis revealed 30,233 cells divided into eight clusters, with T cells and epithelial cells showing distinct functional characteristics. NMF clustering further classified malignant cells into four subtypes: N-glycosylation-C0, Glycosphingolipid-C1, O-GalNAc-C2, and Elongation-C3. The O-GalNAc-C2 subtype exhibited the highest metabolic pathway activity and activation of transcription factors SOX4, JUND, and FOS. Additionally, cell-cell interaction networks highlighted the MK signaling pathway as a critical mediator of intercellular communication. An integrated machine learning framework generated a prognostic model comprising eight DEGs (LAMC2, KRT7, IL32, KRT18, SERPINA1, PGR, AKAP12, EDN2), achieving an average C-index of 0.712 in training and validation cohorts. A low-risk score implies more significant immune cell infiltration and better response to immunotherapy.

CONCLUSIONS

Our study underscores the role of N-glycosylation-related genes in EC prognosis and immunotherapy response prediction, and may provide a basis for the development of targeted therapies and personalized treatment strategies.

摘要

引言

子宫内膜癌(EC)是一种常见的妇科癌症,在全球范围内发病率和疾病相关死亡率都在上升。N-糖基化是一种关键的翻译后修饰,与癌症进展和免疫反应调节有关。我们旨在阐明N-糖基化相关基因在EC细胞异质性、预后和免疫治疗反应中的作用。

方法

从基因表达综合数据库(GEO)中获取了5例EC患者的单细胞RNA测序(scRNA)数据。使用非负矩阵分解(NMF)从scRNA矩阵中识别与N-糖基化相关的细胞亚型。随后,通过整合10种机器学习算法的101种组合生成了一个共识预后特征。通过多种算法进一步研究了EC对免疫治疗的反应。

结果

我们的研究发现了11020个差异表达基因(DEG),其中34个与N-糖基化相关的DEG与EC的总生存期(OS)显著相关。单细胞RNA测序分析显示30233个细胞分为8个簇,T细胞和上皮细胞表现出不同的功能特征。NMF聚类进一步将恶性细胞分为四种亚型:N-糖基化-C0、糖鞘脂-C1、O-GalNAc-C2和延伸-C3。O-GalNAc-C2亚型表现出最高的代谢途径活性以及转录因子SOX4、JUND和FOS的激活。此外,细胞间相互作用网络突出了MK信号通路作为细胞间通讯的关键介质。一个整合的机器学习框架生成了一个包含8个DEG(LAMC2、KRT7、IL32、KRT18、SERPINA1、PGR、AKAP12、EDN2)的预后模型,在训练和验证队列中的平均C指数为0.712。低风险评分意味着免疫细胞浸润更显著且对免疫治疗反应更好。

结论

我们的研究强调了N-糖基化相关基因在EC预后和免疫治疗反应预测中的作用,并可能为靶向治疗和个性化治疗策略的开发提供依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验