Suppr超能文献

基于透明TiO/MoO异质结的具有物联网功能智能手机界面的光伏自供电三乙胺气体传感器。

Transparent TiO/MoO Heterojunction-Based Photovoltaic Self-Powered Triethylamine Gas Sensor with IoT-Enabled Smartphone Interface.

作者信息

Ghuge Rahul Suresh, Madhavanunni Rekha Sreelakshmi, Vikraman Hajeesh Kumar, Velappa Jayaraman Surya, Kiran Mangalampalli S R N, Bhat S Venkataprasad, Sivalingam Yuvaraj

机构信息

Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.

Green Energy Materials Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, India.

出版信息

ACS Sens. 2024 Dec 27;9(12):6592-6604. doi: 10.1021/acssensors.4c02110. Epub 2024 Nov 26.

Abstract

Conventional gas sensors encounter a significant obstacle in terms of power consumption, making them unsuitable for integration with the next generation of smartphones, wireless platforms, and the Internet of Things (IoT). Energy-efficient gas sensors, particularly self-powered gas sensors, can effectively tackle this problem. The researchers are making significant strides in advancing photovoltaic self-powered gas sensors by employing diverse materials and their compositions. Unfortunately, several of these sensors seem complex in fabrication and mainly target oxidizing species detection. To address these issues, we have successfully employed a transparent, cost-efficient solution processed bilayer TiO/MoO heterojunction-based photovoltaic self-powered gas sensor with superior VOC sensing capabilities, marking a significant milestone in this field. The scanning Kelvin probe (SKP) measurement reveals the remarkable change in contact potential difference (-23 mV/kPa) of the TiO/MoO bilayered film after UV light exposure in a triethylamine (TEA) atmosphere, indicating the highest reactivity between TEA molecules and TiO/MoO. Under photovoltaic mode, the sensor further demonstrates exceptional sensitivity (∼2.35 × 10 ppm) to TEA compared to other studied VOCs, with an admirable limit of detection (22 ppm) and signal-to-noise ratio (1540). Additionally, the sensor shows the ability to recognize TEA and estimate its composition in a binary mixture of VOCs from a similar class. The strongest affinity of TiO/MoO toward the TEA molecule, the lowest covalent bond energy, and the highest electron-donating nature of TEA may be mainly attributed to the highest adsorption between TiO/MoO and TEA. We further demonstrate the practical applicability of the TEA sensor with a prototype device connected to a smartphone via the IoT, enabling continuous surveillance of TEA.

摘要

传统气体传感器在功耗方面面临重大障碍,这使得它们不适用于与下一代智能手机、无线平台和物联网(IoT)集成。节能型气体传感器,特别是自供电气体传感器,能够有效解决这一问题。研究人员通过采用多种材料及其成分,在推进光伏自供电气体传感器方面取得了重大进展。不幸的是,其中一些传感器在制造上似乎很复杂,并且主要针对氧化性物质检测。为了解决这些问题,我们成功地采用了一种基于透明、低成本溶液处理的双层TiO/MoO异质结的光伏自供电气体传感器,该传感器具有卓越的挥发性有机化合物(VOC)传感能力,这在该领域标志着一个重要的里程碑。扫描开尔文探针(SKP)测量显示,在三乙胺(TEA)气氛中紫外线照射后,TiO/MoO双层膜的接触电势差发生了显著变化(-23 mV/kPa),表明TEA分子与TiO/MoO之间具有最高的反应活性。在光伏模式下,与其他研究的VOC相比,该传感器对TEA进一步表现出卓越的灵敏度(约2.35×10 ppm),具有令人钦佩的检测限(22 ppm)和信噪比(1540)。此外,该传感器能够识别TEA,并估计其在同类VOC二元混合物中的成分。TiO/MoO对TEA分子的最强亲和力、最低的共价键能以及TEA最高的给电子性质可能主要归因于TiO/MoO与TEA之间的最高吸附。我们通过一个通过物联网连接到智能手机的原型设备进一步证明了TEA传感器的实际适用性,能够对TEA进行连续监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验