Robert Dennis, Sathyamurthy Saigopal, Singh Anshul Kumar, Matta Sri Anusha, Tadepalli Manoj, Tanamala Swetha, Bosemani Vijay, Mammarappallil Joseph, Kundnani Bunty
Qure.ai Technologies Pvt. Ltd., Floor 2, Prestige Summit, Halasuru, Bangalore, Karnataka, India, 560042 (D.R., S.S., A.K.S., S.A.M., M.T., S.T.).
Qure.ai Technologies Pvt. Ltd., Floor 2, Prestige Summit, Halasuru, Bangalore, Karnataka, India, 560042 (D.R., S.S., A.K.S., S.A.M., M.T., S.T.).
Acad Radiol. 2025 Mar;32(3):1706-1717. doi: 10.1016/j.acra.2024.11.003. Epub 2024 Nov 25.
Missed nodules in chest radiographs (CXRs) are common occurrences. We assessed the effect of artificial intelligence (AI) as a second reader on the accuracy of radiologists and non-radiology physicians in lung nodule detection and localization in CXRs.
This retrospective study using the multi-reader multi-case design included 300 CXRs acquired from 40 hospitals across the US. All CXRs had a paired follow-up image (chest CT or CXR) to augment the ground truth establishment for the presence and location of nodules on CXRs by five independent thoracic radiologists. 15 readers (nine radiologists and six non-radiology physicians) read each CXR twice in a second-reader paradigm, once without AI and then immediately with AI assistance. The primary analysis assessed the difference in area-under-the-alternative-free-response-receiver-operating-characteristic-curve (AFROC) of readers with and without AI. Case-level area-under-the-receiver-operating-characteristic-curve (AUROC), sensitivity, and specificity were assessed in secondary analyses.
A total of 300 CXRs (147 with nodules, 153 without nodules) from 300 patients (mean age, 64 years ± 15 [standard deviation]; 174 women) were included. The mean AFROC of readers was 0.73 without AI and 0.81 with AI (95% CI of difference, 0.05-0.10). Case-level AUROC was 0.77 without AI and 0.84 with AI (95% CI of difference, 0.04-0.09). Case-level sensitivity was 72.8% and 83.5% (95% CI of difference, 6.8-14.6) and specificity was 71.1% and 72.0% (95% CI of difference, -0.8-2.6) without and with AI, respectively.
Using AI, readers detected and localized more nodules without any significant difference in false positive interpretations.
胸部X光片(CXR)中遗漏结节是常见情况。我们评估了人工智能(AI)作为第二阅片者对放射科医生和非放射科医生在CXR中肺结节检测和定位准确性的影响。
这项采用多阅片者多病例设计的回顾性研究纳入了从美国40家医院获取的300张CXR。所有CXR均有配对的随访影像(胸部CT或CXR),由五名独立的胸科放射科医生增强对CXR上结节存在和位置的真实情况判定。15名阅片者(9名放射科医生和6名非放射科医生)在第二阅片者模式下对每张CXR阅读两次,一次无AI辅助,然后立即在AI辅助下阅读。主要分析评估了有AI和无AI时阅片者的替代自由反应接受者操作特征曲线下面积(AFROC)差异。次要分析评估了病例水平的接受者操作特征曲线下面积(AUROC)、敏感性和特异性。
共纳入来自300例患者(平均年龄64岁±15[标准差];174名女性)的300张CXR(147张有结节,153张无结节)。阅片者无AI时的平均AFROC为0.73,有AI时为0.81(差异的95%置信区间为0.05 - 0.10)。病例水平的AUROC无AI时为0.77,有AI时为0.84(差异的95%置信区间为0.04 - 0.09)。无AI和有AI时病例水平的敏感性分别为72.8%和83.5%(差异的95%置信区间为6.8 - 14.6),特异性分别为71.1%和72.0%(差异的95%置信区间为 - 0.8 - 2.6)。
使用AI时,阅片者能检测和定位更多结节,且假阳性解读无显著差异。