Kim Sujin, Han Dong Y, Bae Jihye
Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine University of Kentucky, Lexington, 230F, Multidisciplinary Science Building, 725 Rose Street, KY40536, USA.
Division of Neuropsychology, Kentucky Neuroscience Institute College of Medicine University of Kentucky, Lexington, KY40536, USA.
Curr Alzheimer Res. 2024;21(7):503-516. doi: 10.2174/0115672050301740241118044604.
INTRODUCTION/OBJECTIVE: Alzheimer's Disease and Related Dementias (AD/ADRD) present significant caregiving challenges, with increasing burdens on informal caregivers. This study examines the potential of AI-driven Large Language Models (LLMs) in developing digital caregiving strategies for AD/ADRD. The objectives include analyzing existing caregiving education materials (CEMs) and mobile application descriptions (MADs) and aligning key caregiving tasks with digital functions across different stages of disease progression.
We analyzed 38 CEMs from the National Library of Medicine's MedlinePlus, along with associated hyperlinked web resources, and 57 MADs focused on AD digital caregiving. Using ChatGPT 3.5, essential caregiving tasks were extracted and matched with digital functionalities suitable for each stage of AD progression, while also highlighting digital literacy requirements for caregivers.
The analysis categorizes AD caregiving into 4 stages-Pre-Clinical, Mild, Moderate, and Severe-identifying key tasks, such as behavior monitoring, daily assistance, direct supervision, and ensuring a safe environment. These tasks were supported by digital aids, including memory- enhancing apps, Global Positioning System (GPS) tracking, voice-controlled devices, and advanced GPS tracking for comprehensive care. Additionally, 6 essential digital literacy skills for AD/ADRD caregiving were identified: basic digital skills, communication, information management, safety and privacy, healthcare knowledge, and caregiver coordination, highlighting the need for tailored training.
The findings advocate for an LLM-driven strategy in designing digital caregiving interventions, particularly emphasizing a novel paradigm in AD/ADRD support, offering adaptive assistance that evolves with caregivers' needs, thereby enhancing their shared decision-making and patient care capabilities.
引言/目的:阿尔茨海默病及相关痴呆症(AD/ADRD)给护理带来了重大挑战,非正式护理人员的负担日益加重。本研究探讨了人工智能驱动的大语言模型(LLMs)在为AD/ADRD制定数字护理策略方面的潜力。目标包括分析现有的护理教育材料(CEMs)和移动应用描述(MADs),并将关键护理任务与疾病进展不同阶段的数字功能相匹配。
我们分析了美国国立医学图书馆MedlinePlus中的38份CEMs以及相关的超链接网络资源,还有57份专注于AD数字护理的MADs。使用ChatGPT 3.5提取基本护理任务,并将其与适合AD进展各阶段的数字功能相匹配,同时突出护理人员的数字素养要求。
分析将AD护理分为四个阶段——临床前、轻度、中度和重度——确定了关键任务,如行为监测、日常协助、直接监督和确保安全环境。这些任务得到了数字辅助工具的支持,包括增强记忆的应用程序、全球定位系统(GPS)跟踪、语音控制设备以及用于全面护理的高级GPS跟踪。此外,还确定了AD/ADRD护理所需的6项基本数字素养技能:基本数字技能、沟通、信息管理、安全与隐私、医疗保健知识以及护理人员协调,突出了量身定制培训的必要性。
研究结果提倡在设计数字护理干预措施时采用由大语言模型驱动的策略,尤其强调AD/ADRD支持方面的一种新范式,提供随护理人员需求而演变的适应性协助,从而增强他们的共同决策和患者护理能力。