Suppr超能文献

随机对照试验中时期特异性和传统危害比的非 collapsibility 和内置选择偏倚。

Non-collapsibility and built-in selection bias of period-specific and conventional hazard ratio in randomized controlled trials.

机构信息

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001, McGill College , Suite 1200, Montreal, QC, H3A 1G1, Canada.

, Biogen, Cambridge, USA.

出版信息

BMC Med Res Methodol. 2024 Nov 26;24(1):292. doi: 10.1186/s12874-024-02402-3.

Abstract

BACKGROUND

The hazard ratio of the Cox proportional hazards model is widely used in randomized controlled trials to assess treatment effects. However, two properties of the hazard ratio including the non-collapsibility and built-in selection bias need to be further investigated.

METHODS

We conduct simulations to differentiate the non-collapsibility effect and built-in selection bias from the difference between the marginal and the conditional hazard ratio. Meanwhile, we explore the performance of the Cox model with inverse probability of treatment weighting for covariate adjustment when estimating the marginal hazard ratio. The built-in selection bias is further assessed in the period-specific hazard ratio.

RESULTS

The conditional hazard ratio is a biased estimate of the marginal effect due to the non-collapsibility property. In contrast, the hazard ratio estimated from the inverse probability of treatment weighting Cox model provides an unbiased estimate of the true marginal hazard ratio. The built-in selection bias only manifests in the period-specific hazard ratios even when the proportional hazards assumption is satisfied. The Cox model with inverse probability of treatment weighting can be used to account for confounding bias and provide an unbiased effect under the randomized controlled trials setting when the parameter of interest is the marginal effect.

CONCLUSIONS

We propose that the period-specific hazard ratios should always be avoided due to the profound effects of built-in selection bias.

摘要

背景

Cox 比例风险模型的风险比广泛用于随机对照试验中以评估治疗效果。然而,风险比的两个特性,包括不可 collapsibility 和内置选择偏差,需要进一步研究。

方法

我们进行模拟以区分不可 collapsibility 效应和内置选择偏差与边际和条件风险比之间的差异。同时,我们探索了当估计边际风险比时,使用逆概率治疗加权对协变量进行调整的 Cox 模型的性能。内置选择偏差在特定时期的风险比中进一步评估。

结果

由于不可 collapsibility 特性,条件风险比是边际效应的有偏估计。相比之下,来自逆概率治疗加权 Cox 模型的风险比提供了真实边际风险比的无偏估计。即使满足比例风险假设,内置选择偏差仅在特定时期的风险比中表现出来。当感兴趣的参数是边际效应时,在随机对照试验设置中,使用逆概率治疗加权的 Cox 模型可以用于校正混杂偏差并提供无偏效应。

结论

由于内置选择偏差的深远影响,我们建议始终避免使用特定时期的风险比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04eb/11590464/a0ca3ebba9fe/12874_2024_2402_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验