Laboratory of Biophysics, Wageningen University and Research, Wageningen, The Netherlands.
Unilever Global Foods Innovation Centre, Wageningen, The Netherlands.
Food Res Int. 2024 Dec;197(Pt 1):115225. doi: 10.1016/j.foodres.2024.115225. Epub 2024 Oct 24.
High-moisture (HM) extrusion is the dominant industrial process to create structured plant-based protein products that can be used for animal-free meat alternatives. Yet, the underlying mechanisms, such as phase separation, that govern structure formation in plant-protein extrudates, are still poorly understood. Current hypotheses require experimental data in order to be verified, but measurement techniques able to quantify phase-separated anisotropic protein extrudates are lacking, or have yet to be validated. In this study, Low-Field Time Domain (LF TD)-NMR and High-Field (HF) MRI techniques have been employed to unravel phase separation in HM extrudates of soy proteins. Results show that swelling with water enhances the H NMR/MRI signal-to-noise ratio in the measurements and unveils the presence of lamellar regions, while freeze-thawing enhances phase separation due to freeze concentration. Phase separation could be quantified by the observation of two distinct populations by LF TD-NMR T measurements. MRI images of dead-stop ribbon samples from interrupted HM extrusion revealed how the thickness of the aligned lamellar regions increases during passage of the protein melt through the cooling die. We conclude that TD-NMR can quantify phase separation, while spin-echo MRI can spatially resolve the lamellar structure conformation of HM extrudates. Thus, NMR and MRI are powerful techniques for non-invasively characterizing ex situ structure formation during HM extrusion, and for validating hypotheses on shear- and temperature-induced phase separation.
高水分(HM)挤压是制造结构植物性蛋白质产品的主要工业过程,这些产品可用于无动物肉类替代品。然而,控制植物蛋白挤压物中结构形成的基本机制,如相分离,仍然知之甚少。目前的假设需要实验数据来验证,但能够定量分离相的各向异性蛋白质挤压物的测量技术还缺乏,或者尚未得到验证。在这项研究中,采用低场时域(LF TD)-NMR 和高场(HF)MRI 技术来揭示大豆蛋白 HM 挤压物中的相分离。结果表明,水的溶胀提高了测量中的 H NMR/MRI 信号噪声比,并揭示了层状区域的存在,而冻融由于冷冻浓缩增强了相分离。LF TD-NMR T 测量观察到两个不同的群体,可以定量相分离。来自中断 HM 挤压的死停带样品的 MRI 图像揭示了在蛋白质熔体通过冷却模具的过程中,对齐的层状区域的厚度如何增加。我们得出结论,TD-NMR 可以定量相分离,而自旋回波 MRI 可以空间分辨 HM 挤压物的层状结构构象。因此,NMR 和 MRI 是用于非侵入性地表征 HM 挤压过程中原位结构形成以及验证剪切和温度诱导相分离假设的强大技术。