Suppr超能文献

微藻生物过程中的人工智能和/或机器学习算法

Artificial Intelligence and/or Machine Learning Algorithms in Microalgae Bioprocesses.

作者信息

Imamoglu Esra

机构信息

Department of Bioengineering, Faculty of Engineering, Ege University, Izmir 35100, Turkey.

出版信息

Bioengineering (Basel). 2024 Nov 13;11(11):1143. doi: 10.3390/bioengineering11111143.

Abstract

This review examines the increasing application of artificial intelligence (AI) and/or machine learning (ML) in microalgae processes, focusing on their ability to improve production efficiency, yield, and process control. AI/ML technologies are used in various aspects of microalgae processes, such as real-time monitoring, species identification, the optimization of growth conditions, harvesting, and the purification of bioproducts. Commonly employed ML algorithms, including the support vector machine (SVM), genetic algorithm (GA), decision tree (DT), random forest (RF), artificial neural network (ANN), and deep learning (DL), each have unique strengths but also present challenges, such as computational demands, overfitting, and transparency. Despite these hurdles, AI/ML technologies have shown significant improvements in system performance, scalability, and resource efficiency, as well as in cutting costs, minimizing downtime, and reducing environmental impact. However, broader implementations face obstacles, including data availability, model complexity, scalability issues, cybersecurity threats, and regulatory challenges. To address these issues, solutions, such as the use of simulation-based data, modular system designs, and adaptive learning models, have been proposed. This review contributes to the literature by offering a thorough analysis of the practical applications, obstacles, and benefits of AI/ML in microalgae processes, offering critical insights into this fast-evolving field.

摘要

本综述探讨了人工智能(AI)和/或机器学习(ML)在微藻工艺中的应用日益增加的情况,重点关注它们提高生产效率、产量和过程控制的能力。AI/ML技术应用于微藻工艺的各个方面,如实时监测、物种识别、生长条件优化、收获以及生物产品的纯化。常用的ML算法,包括支持向量机(SVM)、遗传算法(GA)、决策树(DT)、随机森林(RF)、人工神经网络(ANN)和深度学习(DL),各有独特优势,但也存在挑战,如计算需求、过拟合和透明度问题。尽管存在这些障碍,AI/ML技术在系统性能、可扩展性和资源效率方面,以及在降低成本、减少停机时间和减轻环境影响方面都有显著改进。然而,更广泛的应用面临障碍,包括数据可用性、模型复杂性、可扩展性问题、网络安全威胁和监管挑战。为解决这些问题,已提出了一些解决方案,如使用基于模拟的数据、模块化系统设计和自适应学习模型。本综述通过对AI/ML在微藻工艺中的实际应用、障碍和益处进行全面分析,为该领域的文献做出了贡献,为这个快速发展的领域提供了关键见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8357/11592280/be538548fbfd/bioengineering-11-01143-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验