Suppr超能文献

用于高性能微藻废水处理和藻类生物精炼的人工智能和机器学习工具:批判性综述

Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: A critical review.

作者信息

Oruganti Raj Kumar, Biji Alka Pulimoottil, Lanuyanger Tiamenla, Show Pau Loke, Sriariyanun Malinee, Upadhyayula Venkata K K, Gadhamshetty Venkataramana, Bhattacharyya Debraj

机构信息

Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.

Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.

出版信息

Sci Total Environ. 2023 Jun 10;876:162797. doi: 10.1016/j.scitotenv.2023.162797. Epub 2023 Mar 11.

Abstract

The increased water scarcity, depletion of freshwater resources, and rising environmental awareness are stressing for the development of sustainable wastewater treatment processes. Microalgae-based wastewater treatment has resulted in a paradigm shift in our approach toward nutrient removal and simultaneous resource recovery from wastewater. Wastewater treatment and the generation of biofuels and bioproducts from microalgae can be coupled to promote the circular economy synergistically. A microalgal biorefinery transforms microalgal biomass into biofuels, bioactive chemicals, and biomaterials. The large-scale cultivation of microalgae is essential for the commercialization and industrialization of microalgae biorefinery. However, the inherent complexity of microalgal cultivation parameters regarding physiological and illumination parameters renders it challenging to facilitate a smooth and cost-effective operation. Artificial intelligence (AI)/machine learning algorithms (MLA) offer innovative strategies for assessing, predicting, and regulating uncertainties in algal wastewater treatment and biorefinery. The current study presents a critical review of the most promising AI/MLAs that demonstrate a potential to be applied in microalgal technologies. The most commonly used MLAs include artificial neural networks, support vector machine, genetic algorithms, decision tree, and random forest algorithms. Recent developments in AI have made it possible to combine cutting-edge techniques from AI research fields with microalgae for accurate analysis of large datasets. MLAs have been extensively studied for their potential in microalgae detection and classification. However, the ML application in microalgal industries, such as optimizing microalgae cultivation for increased biomass productivity, is still in its infancy. Incorporating smart AI/ML-enabled Internet of Things (IoT) based technologies can help the microalgal industries to operate effectively with minimum resources. Future research directions are also highlighted, and some of the challenges and perspectives of AI/ML are outlined. As the world is entering the digitalized industrial era, this review provides an insightful discussion about intelligent microalgal wastewater treatment and biorefinery for researchers in the field of microalgae.

摘要

水资源短缺加剧、淡水资源枯竭以及环境意识的提高,都对可持续废水处理工艺的发展构成了压力。基于微藻的废水处理已使我们在废水营养物去除及同步资源回收方面的方法发生了范式转变。废水处理以及利用微藻生产生物燃料和生物制品可以结合起来,协同促进循环经济。微藻生物精炼厂将微藻生物质转化为生物燃料、生物活性化学品和生物材料。微藻的大规模培养对于微藻生物精炼厂的商业化和工业化至关重要。然而,微藻培养参数在生理和光照参数方面固有的复杂性,使得实现平稳且经济高效的运行具有挑战性。人工智能(AI)/机器学习算法(MLA)为评估、预测和调节藻类废水处理及生物精炼中的不确定性提供了创新策略。本研究对最具潜力应用于微藻技术的AI/MLA进行了批判性综述。最常用的MLA包括人工神经网络、支持向量机、遗传算法、决策树和随机森林算法。AI的最新发展使得将AI研究领域的前沿技术与微藻相结合,以准确分析大型数据集成为可能。MLA在微藻检测和分类方面的潜力已得到广泛研究。然而,ML在微藻产业中的应用,如优化微藻培养以提高生物质生产力,仍处于起步阶段。整合基于智能AI/ML的物联网(IoT)技术可以帮助微藻产业以最少的资源有效运作。还强调了未来的研究方向,并概述了AI/ML的一些挑战和前景。随着世界进入数字化工业时代,本综述为微藻领域的研究人员提供了关于智能微藻废水处理和生物精炼的深刻讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验