Suppr超能文献

结合高光谱成像与化学计量学对丹参酮含量预测及产地分类研究 (你提供的原文似乎不完整,“of”后面缺少具体内容)

Tanshinone Content Prediction and Geographical Origin Classification of by Combining Hyperspectral Imaging with Chemometrics.

作者信息

Dai Yaoyao, Yan Binbin, Xiong Feng, Bai Ruibin, Wang Siman, Guo Lanping, Yang Jian

机构信息

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.

School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.

出版信息

Foods. 2024 Nov 18;13(22):3673. doi: 10.3390/foods13223673.

Abstract

Hyperspectral imaging (HSI) technology was combined with chemometrics to achieve rapid determination of tanshinone contents in , as well as the rapid identification of its origins. Derivative (D1), second derivative (D2), Savitzky-Golay filtering (SG), multiplicative scatter correction (MSC), and standard normal variate transformation (SNV) were utilized to preprocess original spectrum (ORI). Partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM) models were employed to discriminate 420 samples collected from Shandong, Hebei, Shanxi, Sichuan, and Anhui Provinces. The contents of tanshinone IIA, tanshinone I, cryptotanshinone, and total tanshinones in were predicted by the back-propagation neural network (BPNN), partial least square regression (PLSR), and random forest (RF). Finally, effective wavelengths were selected using the successive projections algorithm (SPA) and variable iterative space shrinkage approach (VISSA). The results indicated that the D1-PLS-DA model performed the best with a classification accuracy of 98.97%. SG-BPNN achieved the best prediction effect for cryptotanshinone (RMSEP = 0.527, RPD = 3.25), ORI-BPNN achieved the best prediction effect for tanshinone IIA (RMSEP = 0.332, RPD = 3.34), MSC-PLSR achieved the best prediction effect for tanshinone I (RMSEP = 0.110, RPD = 4.03), and SNV-BPNN achieved the best prediction effect for total tanshinones (RMSEP = 0.759, RPD = 4.01). When using the SPA and VISSA, the number of wavelengths was reduced below 60 and 150, respectively, and the performance of the models was all very good (RPD > 3). Therefore, the combination of HSI with chemometrics provides a promising method for predicting the active ingredients of and identifying its geographical origins.

摘要

高光谱成像(HSI)技术与化学计量学相结合,以实现丹参中丹参酮含量的快速测定及其产地的快速鉴别。采用一阶导数(D1)、二阶导数(D2)、Savitzky-Golay滤波(SG)、多元散射校正(MSC)和标准正态变量变换(SNV)对原始光谱(ORI)进行预处理。利用偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)模型对从山东、河北、山西、四川和安徽采集的420个样本进行判别。采用反向传播神经网络(BPNN)、偏最小二乘回归(PLSR)和随机森林(RF)对丹参中丹参酮IIA、丹参酮I、隐丹参酮和总丹参酮的含量进行预测。最后,使用连续投影算法(SPA)和可变迭代空间收缩方法(VISSA)选择有效波长。结果表明,D1-PLS-DA模型表现最佳,分类准确率为98.97%。SG-BPNN对隐丹参酮的预测效果最佳(RMSEP = 0.527,RPD = 3.25),ORI-BPNN对丹参酮IIA的预测效果最佳(RMSEP = 0.332,RPD = 3.34),MSC-PLSR对丹参酮I的预测效果最佳(RMSEP = 0.110,RPD = 4.03),SNV-BPNN对总丹参酮的预测效果最佳(RMSEP = 0.759,RPD = 4.01)。当使用SPA和VISSA时,波长数量分别减少到60以下和150以下,且模型性能均非常好(RPD > 3)。因此,HSI与化学计量学的结合为预测丹参的活性成分和鉴别其地理来源提供了一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a2/11593691/970d2bdf91af/foods-13-03673-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验