Suppr超能文献

使用机器学习和可解释人工智能对儿科进行可靠的自闭症谱系障碍诊断。

Reliable Autism Spectrum Disorder Diagnosis for Pediatrics Using Machine Learning and Explainable AI.

作者信息

Jeon Insu, Kim Minjoong, So Dayeong, Kim Eun Young, Nam Yunyoung, Kim Seungsoo, Shim Sehoon, Kim Joungmin, Moon Jihoon

机构信息

Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea.

Department of ICT Convergence, Soonchunhyang University, Asan 31538, Republic of Korea.

出版信息

Diagnostics (Basel). 2024 Nov 8;14(22):2504. doi: 10.3390/diagnostics14222504.

Abstract

As the demand for early and accurate diagnosis of autism spectrum disorder (ASD) increases, the integration of machine learning (ML) and explainable artificial intelligence (XAI) is emerging as a critical advancement that promises to revolutionize intervention strategies by improving both accuracy and transparency. This paper presents a method that combines XAI techniques with a rigorous data-preprocessing pipeline to improve the accuracy and interpretability of ML-based diagnostic tools. Our preprocessing pipeline included outlier removal, missing data handling, and selecting pertinent features based on clinical expert advice. Using and the package (version 6.0.94), we developed and compared several ML algorithms, validated using 10-fold cross-validation and optimized by grid search hyperparameter tuning. XAI techniques were employed to improve model transparency, offering insights into how features contribute to predictions, thereby enhancing clinician trust. Rigorous data-preprocessing improved the models' generalizability and real-world applicability across diverse clinical datasets, ensuring a robust performance. Neural networks and extreme gradient boosting models achieved the best performance in terms of accuracy, precision, and recall. XAI techniques demonstrated that behavioral features significantly influenced model predictions, leading to greater interpretability. This study successfully developed highly precise and interpretable ML models for ASD diagnosis, connecting advanced ML methods with practical clinical application and supporting the adoption of AI-driven diagnostic tools by healthcare professionals. This study's findings contribute to personalized intervention strategies and early diagnostic practices, ultimately improving outcomes and quality of life for individuals with ASD.

摘要

随着对自闭症谱系障碍(ASD)早期准确诊断的需求不断增加,机器学习(ML)与可解释人工智能(XAI)的整合正成为一项关键进展,有望通过提高准确性和透明度来彻底改变干预策略。本文提出了一种将XAI技术与严格的数据预处理流程相结合的方法,以提高基于ML的诊断工具的准确性和可解释性。我们的预处理流程包括异常值去除、缺失数据处理以及根据临床专家建议选择相关特征。使用 和 包(版本6.0.94),我们开发并比较了几种ML算法,通过10折交叉验证进行验证,并通过网格搜索超参数调整进行优化。采用XAI技术来提高模型透明度,深入了解特征如何对预测做出贡献,从而增强临床医生的信任。严格的数据预处理提高了模型在不同临床数据集上的泛化能力和实际适用性,确保了稳健的性能。神经网络和极端梯度提升模型在准确性、精确性和召回率方面表现最佳。XAI技术表明行为特征对模型预测有显著影响,从而提高了可解释性。本研究成功开发了用于ASD诊断的高精度且可解释的ML模型,将先进的ML方法与实际临床应用联系起来,并支持医疗保健专业人员采用人工智能驱动的诊断工具。本研究的结果有助于制定个性化干预策略和早期诊断实践,最终改善ASD患者的治疗效果和生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4040/11592605/34df612b8383/diagnostics-14-02504-g004a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验