Ryan-Phillips Finlay, Henehan Leighann, Ramdas Sithara, Palace Jacqueline, Beeson David, Dong Yin Yao
Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DS, UK.
Neurology Department, John Radcliffe Hospital, Oxford OX3 9DU, UK.
Biomedicines. 2024 Nov 8;12(11):2549. doi: 10.3390/biomedicines12112549.
BACKGROUND/OBJECTIVES: Congenital myasthenic syndromes (CMSs) are caused by variants in >30 genes with increasing numbers of variants of unknown significance (VUS) discovered by next-generation sequencing. Establishing VUS pathogenicity requires in vitro studies that slow diagnosis and treatment initiation. The recently developed protein structure prediction software AlphaFold2/ColabFold has revolutionized structural biology; such predictions have also been leveraged in AlphaMissense, which predicts ClinVar variant pathogenicity with 90% accuracy. Few reports, however, have tested these tools on rigorously characterized clinical data. We therefore assessed ColabFold and AlphaMissense as diagnostic aids for CMSs, using variants of the CHRN genes that encode the nicotinic acetylcholine receptor (nAChR).
Utilizing a dataset of 61 clinically validated CHRN variants, (1) we evaluated the possibility of a ColabFold metric (either predicted structural disruption, prediction confidence, or prediction quality) that distinguishes variant pathogenicity; (2) we assessed AlphaMissense's ability to differentiate variant pathogenicity; and (3) we compared AlphaMissense to the existing pathogenicity prediction programs AlamutVP and EVE.
Analyzing the variant effects on ColabFold CHRN structure prediction, prediction confidence, and prediction quality did not yield any reliable pathogenicity indicative metric. However, AlphaMissense predicted variant pathogenicity with 63.93% accuracy in our dataset-a much greater proportion than AlamutVP (27.87%) and EVE (28.33%).
Emerging in silico tools can revolutionize genetic disease diagnosis-however, improvement, refinement, and clinical validation are imperative prior to practical acquisition.
背景/目的:先天性肌无力综合征(CMSs)由30多个基因的变异引起,通过下一代测序发现的意义未明变异(VUS)数量不断增加。确定VUS的致病性需要进行体外研究,这会延缓诊断和治疗的开始。最近开发的蛋白质结构预测软件AlphaFold2/ColabFold彻底改变了结构生物学;此类预测也被应用于AlphaMissense中,该软件预测ClinVar变异致病性的准确率达90%。然而,很少有报告使用经过严格表征的临床数据对这些工具进行测试。因此,我们使用编码烟碱型乙酰胆碱受体(nAChR)的CHRN基因变异,评估了ColabFold和AlphaMissense作为CMSs诊断辅助工具的作用。
利用61个经临床验证过的CHRN变异数据集,(1)我们评估了ColabFold指标(预测的结构破坏、预测置信度或预测质量)区分变异致病性可能性;(2)我们评估了AlphaMissense区分变异致病性的能力;(3)我们将AlphaMissense与现有的致病性预测程序AlamutVP及EVE进行了比较。
分析变异对ColabFold CHRN结构预测、预测置信度和预测质量的影响,未得出任何可靠的致病性指示指标。然而,在我们的数据集中,AlphaMissense预测变异致病性时的准确率为63.93%,比AlamutVP(27.87%)和EVE(28.33%)高得多。
新兴的计算机模拟工具能够彻底改变遗传疾病的诊断——然而,在实际应用之前,必须进行改进、优化和临床验证。