College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China.
College of Life Sciences, Jilin Normal University, Siping 136000, China.
Int J Mol Sci. 2024 Nov 13;25(22):12188. doi: 10.3390/ijms252212188.
Quinoa ( Willd.) is an annual broadleaf plant belonging to the Amaranthaceae family. It is a nutritious food crop and is considered to be drought-tolerant, but drought is still one of the most important abiotic stress factors limiting its yield. Quinoa responses to drought are related to drought intensity and genotype. This study used two different drought-responsive quinoa cultivars, LL1 (drought-tolerant) and ZK1 (drought-sensitive), to reveal the important mechanisms of drought response in quinoa by combining physiological, transcriptomic, and metabolomic analyses. The physiological analysis indicated that Chla/Chlb might be important for drought tolerance in quinoa. A total of 1756 and 764 differentially expressed genes (DEGs) were identified in LL1 and ZK1, respectively. GO (Gene Ontology) enrichment analysis identified 52 common GO terms, but response to abscisic acid (GO:0009737) and response to osmotic stress (GO:0006970) were only enriched in LL1. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis revealed that glycerophospholipid metabolism (ko00564) and cysteine and methionine metabolism (ko00270) ranked at the top of the list in both cultivars. A total of 1844 metabolites were identified by metabolomic analysis. "Lipids and lipid-like" molecules had the highest proportions. The DEMs in LL1 and ZK1 were mainly categorized 6 and 4 Human Metabolome Database (HMDB) superclasses, respectively. KEGG analysis revealed that the 'α-linolenic acid metabolism' was enriched in both LL1 and ZK1. Joint KEGG analysis also revealed that the 'α-linolenic acid metabolism' pathway was enriched by both the DEGs and DEMs of LL1. There were 17 DEGs and 8 DEMs enriched in this pathway, and methyl jasmonate (MeJA) may play an important role in the drought response of quinoa. This study will provide information for the identification of drought resistance in quinoa, research on the molecular mechanism of drought resistance, and genetic breeding for drought resistance in quinoa.
藜麦(Willd.)是一种一年生阔叶植物,属于苋科。它是一种营养丰富的粮食作物,被认为具有耐旱性,但干旱仍然是限制其产量的最重要非生物胁迫因素之一。藜麦对干旱的反应与干旱强度和基因型有关。本研究使用了两个不同的耐旱性藜麦品种 LL1(耐旱)和 ZK1(耐旱),通过结合生理、转录组和代谢组分析,揭示了藜麦对干旱响应的重要机制。生理分析表明,Chla/Chlb 可能对藜麦的耐旱性很重要。在 LL1 和 ZK1 中分别鉴定出 1756 和 764 个差异表达基因(DEGs)。GO(基因本体论)富集分析鉴定出 52 个共同 GO 术语,但仅在 LL1 中富集了对脱落酸的响应(GO:0009737)和对渗透胁迫的响应(GO:0006970)。KEGG(京都基因与基因组百科全书)分析表明,甘油磷脂代谢(ko00564)和半胱氨酸和蛋氨酸代谢(ko00270)在两个品种中均名列前茅。通过代谢组学分析共鉴定出 1844 种代谢物。“脂质和类脂”分子的比例最高。LL1 和 ZK1 中的 DEMs 主要分为 6 和 4 个人类代谢物数据库(HMDB)超类。KEGG 分析表明,“α-亚麻酸代谢”在 LL1 和 ZK1 中均有富集。联合 KEGG 分析还表明,“α-亚麻酸代谢”途径在 LL1 的 DEGs 和 DEMs 中均有富集。该途径共富集了 17 个 DEGs 和 8 个 DEMs,茉莉酸甲酯(MeJA)可能在藜麦对干旱的响应中起重要作用。本研究将为藜麦抗旱性鉴定、抗旱性分子机制研究以及藜麦抗旱性遗传育种提供信息。