Suppr超能文献

调控干旱胁迫下藜麦(Chenopodium quinoa Willd.)种子中葡萄糖代谢的分子机制。

Molecular mechanisms regulating glucose metabolism in quinoa (Chenopodium quinoa Willd.) seeds under drought stress.

机构信息

North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China.

The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China.

出版信息

BMC Plant Biol. 2024 Aug 23;24(1):796. doi: 10.1186/s12870-024-05510-w.

Abstract

BACKGROUND

Abiotic stress seriously affects the growth and yield of crops. It is necessary to search and utilize novel abiotic stress resistant genes for 2.0 breeding programme in quinoa. In this study, the impact of drought stress on glucose metabolism were investigated through transcriptomic and metabolomic analyses in quinoa seeds. Candidate drought tolerance genes on glucose metabolism pathway were verified by qRT-PCR combined with yeast expression system.

RESULTS

From 70 quinoa germplasms, drought tolerant material M059 and drought sensitive material M024 were selected by comprehensive evaluation of drought resistance. 7042 differentially expressed genes (DEGs) were indentified through transcriptomic analyses. Gene Ontology (GO) analysis revealed that these DEGs were closely related to carbohydrate metabolic process, phosphorus-containing groups, and intracellular membrane-bounded organelles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis detected that DEGs were related to pathways involving carbohydrate metabolisms, glycolysis and gluconeogenesis. Twelve key differentially accumulated metabolites (DAMs), (D-galactose, UDP-glucose, succinate, inositol, D-galactose, D-fructose-6-phosphate, D-glucose-6-phosphate, D-glucose-1-phosphate, dihydroxyacetone phosphate, ribulose-5-phosphate, citric acid and L-malate), and ten key candidate DEGs (CqAGAL2, CqINV, CqFrK7, CqCELB, Cqbg1x, CqFBP, CqALDO, CqPGM, CqIDH3, and CqSDH) involved in drought response were identified. CqSDH, CqAGAL2, and Cqβ-GAL13 were candidate genes that have been validated in both transcriptomics and yeast expression screen system.

CONCLUSION

These findings provide a foundation for elucidating the molecular regulatory mechanisms governing glucose metabolism in quinoa seeds under drought stress, providing insights for future research exploring responses to drought stress in quinoa.

摘要

背景

非生物胁迫严重影响作物的生长和产量。因此,有必要在藜麦的 2.0 育种计划中寻找和利用新的非生物胁迫抗性基因。本研究通过转录组学和代谢组学分析,研究了干旱胁迫对藜麦种子中葡萄糖代谢的影响。通过 qRT-PCR 结合酵母表达系统验证了葡萄糖代谢途径上的候选耐旱基因。

结果

从 70 份藜麦种质资源中,通过对耐旱性的综合评价,选择了耐旱性材料 M059 和耐旱性敏感材料 M024。通过转录组分析鉴定了 7042 个差异表达基因(DEGs)。基因本体论(GO)分析表明,这些 DEGs 与碳水化合物代谢过程、含磷基团和细胞内膜结合细胞器密切相关。京都基因与基因组百科全书(KEGG)富集分析检测到 DEGs 与涉及碳水化合物代谢、糖酵解和糖异生的途径有关。鉴定出 12 个关键差异积累代谢物(DAMs)(D-半乳糖、UDP-葡萄糖、琥珀酸、肌醇、D-半乳糖、D-果糖-6-磷酸、D-葡萄糖-6-磷酸、D-葡萄糖-1-磷酸、二羟丙酮磷酸、核酮糖-5-磷酸、柠檬酸和 L-苹果酸)和 10 个关键候选 DEGs(CqAGAL2、CqINV、CqFrK7、CqCELB、Cqbg1x、CqFBP、CqALDO、CqPGM、CqIDH3 和 CqSDH)参与干旱响应。CqSDH、CqAGAL2 和 Cqβ-GAL13 是在转录组学和酵母表达筛选系统中都得到验证的候选基因。

结论

这些发现为阐明干旱胁迫下藜麦种子中葡萄糖代谢的分子调控机制提供了基础,为未来研究藜麦对干旱胁迫的响应提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c72/11342610/3a1f2e004226/12870_2024_5510_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验